Metamath Proof Explorer


Theorem hdmaprnlem9N

Description: Part of proof of part 12 in Baer p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 and mapdcnv11N . Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h
|- H = ( LHyp ` K )
hdmaprnlem1.u
|- U = ( ( DVecH ` K ) ` W )
hdmaprnlem1.v
|- V = ( Base ` U )
hdmaprnlem1.n
|- N = ( LSpan ` U )
hdmaprnlem1.c
|- C = ( ( LCDual ` K ) ` W )
hdmaprnlem1.l
|- L = ( LSpan ` C )
hdmaprnlem1.m
|- M = ( ( mapd ` K ) ` W )
hdmaprnlem1.s
|- S = ( ( HDMap ` K ) ` W )
hdmaprnlem1.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmaprnlem1.se
|- ( ph -> s e. ( D \ { Q } ) )
hdmaprnlem1.ve
|- ( ph -> v e. V )
hdmaprnlem1.e
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) )
hdmaprnlem1.ue
|- ( ph -> u e. V )
hdmaprnlem1.un
|- ( ph -> -. u e. ( N ` { v } ) )
hdmaprnlem1.d
|- D = ( Base ` C )
hdmaprnlem1.q
|- Q = ( 0g ` C )
hdmaprnlem1.o
|- .0. = ( 0g ` U )
hdmaprnlem1.a
|- .+b = ( +g ` C )
hdmaprnlem1.t2
|- ( ph -> t e. ( ( N ` { v } ) \ { .0. } ) )
hdmaprnlem1.p
|- .+ = ( +g ` U )
hdmaprnlem1.pt
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) )
Assertion hdmaprnlem9N
|- ( ph -> s = ( S ` t ) )

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h
 |-  H = ( LHyp ` K )
2 hdmaprnlem1.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmaprnlem1.v
 |-  V = ( Base ` U )
4 hdmaprnlem1.n
 |-  N = ( LSpan ` U )
5 hdmaprnlem1.c
 |-  C = ( ( LCDual ` K ) ` W )
6 hdmaprnlem1.l
 |-  L = ( LSpan ` C )
7 hdmaprnlem1.m
 |-  M = ( ( mapd ` K ) ` W )
8 hdmaprnlem1.s
 |-  S = ( ( HDMap ` K ) ` W )
9 hdmaprnlem1.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 hdmaprnlem1.se
 |-  ( ph -> s e. ( D \ { Q } ) )
11 hdmaprnlem1.ve
 |-  ( ph -> v e. V )
12 hdmaprnlem1.e
 |-  ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) )
13 hdmaprnlem1.ue
 |-  ( ph -> u e. V )
14 hdmaprnlem1.un
 |-  ( ph -> -. u e. ( N ` { v } ) )
15 hdmaprnlem1.d
 |-  D = ( Base ` C )
16 hdmaprnlem1.q
 |-  Q = ( 0g ` C )
17 hdmaprnlem1.o
 |-  .0. = ( 0g ` U )
18 hdmaprnlem1.a
 |-  .+b = ( +g ` C )
19 hdmaprnlem1.t2
 |-  ( ph -> t e. ( ( N ` { v } ) \ { .0. } ) )
20 hdmaprnlem1.p
 |-  .+ = ( +g ` U )
21 hdmaprnlem1.pt
 |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) )
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 hdmaprnlem7N
 |-  ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( L ` { ( ( S ` u ) .+b s ) } ) )
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 hdmaprnlem8N
 |-  ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( M ` ( N ` { t } ) ) )
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4N
 |-  ( ph -> ( M ` ( N ` { t } ) ) = ( L ` { s } ) )
25 23 24 eleqtrd
 |-  ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( L ` { s } ) )
26 22 25 elind
 |-  ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( ( L ` { ( ( S ` u ) .+b s ) } ) i^i ( L ` { s } ) ) )
27 1 5 9 lcdlvec
 |-  ( ph -> C e. LVec )
28 1 5 9 lcdlmod
 |-  ( ph -> C e. LMod )
29 1 2 3 5 15 8 9 13 hdmapcl
 |-  ( ph -> ( S ` u ) e. D )
30 10 eldifad
 |-  ( ph -> s e. D )
31 15 18 lmodvacl
 |-  ( ( C e. LMod /\ ( S ` u ) e. D /\ s e. D ) -> ( ( S ` u ) .+b s ) e. D )
32 28 29 30 31 syl3anc
 |-  ( ph -> ( ( S ` u ) .+b s ) e. D )
33 eqid
 |-  ( LSubSp ` C ) = ( LSubSp ` C )
34 15 33 6 lspsncl
 |-  ( ( C e. LMod /\ s e. D ) -> ( L ` { s } ) e. ( LSubSp ` C ) )
35 28 30 34 syl2anc
 |-  ( ph -> ( L ` { s } ) e. ( LSubSp ` C ) )
36 1 7 5 33 9 mapdrn2
 |-  ( ph -> ran M = ( LSubSp ` C ) )
37 35 36 eleqtrrd
 |-  ( ph -> ( L ` { s } ) e. ran M )
38 1 7 9 37 mapdcnvid2
 |-  ( ph -> ( M ` ( `' M ` ( L ` { s } ) ) ) = ( L ` { s } ) )
39 12 38 eqtr4d
 |-  ( ph -> ( M ` ( N ` { v } ) ) = ( M ` ( `' M ` ( L ` { s } ) ) ) )
40 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
41 1 2 9 dvhlmod
 |-  ( ph -> U e. LMod )
42 3 40 4 lspsncl
 |-  ( ( U e. LMod /\ v e. V ) -> ( N ` { v } ) e. ( LSubSp ` U ) )
43 41 11 42 syl2anc
 |-  ( ph -> ( N ` { v } ) e. ( LSubSp ` U ) )
44 1 7 2 40 9 37 mapdcnvcl
 |-  ( ph -> ( `' M ` ( L ` { s } ) ) e. ( LSubSp ` U ) )
45 1 2 40 7 9 43 44 mapd11
 |-  ( ph -> ( ( M ` ( N ` { v } ) ) = ( M ` ( `' M ` ( L ` { s } ) ) ) <-> ( N ` { v } ) = ( `' M ` ( L ` { s } ) ) ) )
46 39 45 mpbid
 |-  ( ph -> ( N ` { v } ) = ( `' M ` ( L ` { s } ) ) )
47 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 hdmaprnlem3N
 |-  ( ph -> ( N ` { v } ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) )
48 46 47 eqnetrrd
 |-  ( ph -> ( `' M ` ( L ` { s } ) ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) )
49 15 33 6 lspsncl
 |-  ( ( C e. LMod /\ ( ( S ` u ) .+b s ) e. D ) -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) )
50 28 32 49 syl2anc
 |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) )
51 50 36 eleqtrrd
 |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ran M )
52 1 7 9 37 51 mapdcnv11N
 |-  ( ph -> ( ( `' M ` ( L ` { s } ) ) = ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) <-> ( L ` { s } ) = ( L ` { ( ( S ` u ) .+b s ) } ) ) )
53 52 necon3bid
 |-  ( ph -> ( ( `' M ` ( L ` { s } ) ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) <-> ( L ` { s } ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) ) )
54 48 53 mpbid
 |-  ( ph -> ( L ` { s } ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) )
55 54 necomd
 |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) =/= ( L ` { s } ) )
56 15 16 6 27 32 30 55 lspdisj2
 |-  ( ph -> ( ( L ` { ( ( S ` u ) .+b s ) } ) i^i ( L ` { s } ) ) = { Q } )
57 26 56 eleqtrd
 |-  ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. { Q } )
58 elsni
 |-  ( ( s ( -g ` C ) ( S ` t ) ) e. { Q } -> ( s ( -g ` C ) ( S ` t ) ) = Q )
59 57 58 syl
 |-  ( ph -> ( s ( -g ` C ) ( S ` t ) ) = Q )
60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4tN
 |-  ( ph -> t e. V )
61 1 2 3 5 15 8 9 60 hdmapcl
 |-  ( ph -> ( S ` t ) e. D )
62 eqid
 |-  ( -g ` C ) = ( -g ` C )
63 15 16 62 lmodsubeq0
 |-  ( ( C e. LMod /\ s e. D /\ ( S ` t ) e. D ) -> ( ( s ( -g ` C ) ( S ` t ) ) = Q <-> s = ( S ` t ) ) )
64 28 30 61 63 syl3anc
 |-  ( ph -> ( ( s ( -g ` C ) ( S ` t ) ) = Q <-> s = ( S ` t ) ) )
65 59 64 mpbid
 |-  ( ph -> s = ( S ` t ) )