| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmaprnlem1.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmaprnlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmaprnlem1.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmaprnlem1.n |
|- N = ( LSpan ` U ) |
| 5 |
|
hdmaprnlem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 6 |
|
hdmaprnlem1.l |
|- L = ( LSpan ` C ) |
| 7 |
|
hdmaprnlem1.m |
|- M = ( ( mapd ` K ) ` W ) |
| 8 |
|
hdmaprnlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 9 |
|
hdmaprnlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
hdmaprnlem1.se |
|- ( ph -> s e. ( D \ { Q } ) ) |
| 11 |
|
hdmaprnlem1.ve |
|- ( ph -> v e. V ) |
| 12 |
|
hdmaprnlem1.e |
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
| 13 |
|
hdmaprnlem1.ue |
|- ( ph -> u e. V ) |
| 14 |
|
hdmaprnlem1.un |
|- ( ph -> -. u e. ( N ` { v } ) ) |
| 15 |
|
hdmaprnlem1.d |
|- D = ( Base ` C ) |
| 16 |
|
hdmaprnlem1.q |
|- Q = ( 0g ` C ) |
| 17 |
|
hdmaprnlem1.o |
|- .0. = ( 0g ` U ) |
| 18 |
|
hdmaprnlem1.a |
|- .+b = ( +g ` C ) |
| 19 |
|
hdmaprnlem1.t2 |
|- ( ph -> t e. ( ( N ` { v } ) \ { .0. } ) ) |
| 20 |
|
hdmaprnlem1.p |
|- .+ = ( +g ` U ) |
| 21 |
|
hdmaprnlem1.pt |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) |
| 22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
hdmaprnlem7N |
|- ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( L ` { ( ( S ` u ) .+b s ) } ) ) |
| 23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
hdmaprnlem8N |
|- ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( M ` ( N ` { t } ) ) ) |
| 24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
hdmaprnlem4N |
|- ( ph -> ( M ` ( N ` { t } ) ) = ( L ` { s } ) ) |
| 25 |
23 24
|
eleqtrd |
|- ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( L ` { s } ) ) |
| 26 |
22 25
|
elind |
|- ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( ( L ` { ( ( S ` u ) .+b s ) } ) i^i ( L ` { s } ) ) ) |
| 27 |
1 5 9
|
lcdlvec |
|- ( ph -> C e. LVec ) |
| 28 |
1 5 9
|
lcdlmod |
|- ( ph -> C e. LMod ) |
| 29 |
1 2 3 5 15 8 9 13
|
hdmapcl |
|- ( ph -> ( S ` u ) e. D ) |
| 30 |
10
|
eldifad |
|- ( ph -> s e. D ) |
| 31 |
15 18
|
lmodvacl |
|- ( ( C e. LMod /\ ( S ` u ) e. D /\ s e. D ) -> ( ( S ` u ) .+b s ) e. D ) |
| 32 |
28 29 30 31
|
syl3anc |
|- ( ph -> ( ( S ` u ) .+b s ) e. D ) |
| 33 |
|
eqid |
|- ( LSubSp ` C ) = ( LSubSp ` C ) |
| 34 |
15 33 6
|
lspsncl |
|- ( ( C e. LMod /\ s e. D ) -> ( L ` { s } ) e. ( LSubSp ` C ) ) |
| 35 |
28 30 34
|
syl2anc |
|- ( ph -> ( L ` { s } ) e. ( LSubSp ` C ) ) |
| 36 |
1 7 5 33 9
|
mapdrn2 |
|- ( ph -> ran M = ( LSubSp ` C ) ) |
| 37 |
35 36
|
eleqtrrd |
|- ( ph -> ( L ` { s } ) e. ran M ) |
| 38 |
1 7 9 37
|
mapdcnvid2 |
|- ( ph -> ( M ` ( `' M ` ( L ` { s } ) ) ) = ( L ` { s } ) ) |
| 39 |
12 38
|
eqtr4d |
|- ( ph -> ( M ` ( N ` { v } ) ) = ( M ` ( `' M ` ( L ` { s } ) ) ) ) |
| 40 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 41 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 42 |
3 40 4
|
lspsncl |
|- ( ( U e. LMod /\ v e. V ) -> ( N ` { v } ) e. ( LSubSp ` U ) ) |
| 43 |
41 11 42
|
syl2anc |
|- ( ph -> ( N ` { v } ) e. ( LSubSp ` U ) ) |
| 44 |
1 7 2 40 9 37
|
mapdcnvcl |
|- ( ph -> ( `' M ` ( L ` { s } ) ) e. ( LSubSp ` U ) ) |
| 45 |
1 2 40 7 9 43 44
|
mapd11 |
|- ( ph -> ( ( M ` ( N ` { v } ) ) = ( M ` ( `' M ` ( L ` { s } ) ) ) <-> ( N ` { v } ) = ( `' M ` ( L ` { s } ) ) ) ) |
| 46 |
39 45
|
mpbid |
|- ( ph -> ( N ` { v } ) = ( `' M ` ( L ` { s } ) ) ) |
| 47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hdmaprnlem3N |
|- ( ph -> ( N ` { v } ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |
| 48 |
46 47
|
eqnetrrd |
|- ( ph -> ( `' M ` ( L ` { s } ) ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |
| 49 |
15 33 6
|
lspsncl |
|- ( ( C e. LMod /\ ( ( S ` u ) .+b s ) e. D ) -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) |
| 50 |
28 32 49
|
syl2anc |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) |
| 51 |
50 36
|
eleqtrrd |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ran M ) |
| 52 |
1 7 9 37 51
|
mapdcnv11N |
|- ( ph -> ( ( `' M ` ( L ` { s } ) ) = ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) <-> ( L ` { s } ) = ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |
| 53 |
52
|
necon3bid |
|- ( ph -> ( ( `' M ` ( L ` { s } ) ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) <-> ( L ` { s } ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |
| 54 |
48 53
|
mpbid |
|- ( ph -> ( L ` { s } ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) ) |
| 55 |
54
|
necomd |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) =/= ( L ` { s } ) ) |
| 56 |
15 16 6 27 32 30 55
|
lspdisj2 |
|- ( ph -> ( ( L ` { ( ( S ` u ) .+b s ) } ) i^i ( L ` { s } ) ) = { Q } ) |
| 57 |
26 56
|
eleqtrd |
|- ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. { Q } ) |
| 58 |
|
elsni |
|- ( ( s ( -g ` C ) ( S ` t ) ) e. { Q } -> ( s ( -g ` C ) ( S ` t ) ) = Q ) |
| 59 |
57 58
|
syl |
|- ( ph -> ( s ( -g ` C ) ( S ` t ) ) = Q ) |
| 60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
hdmaprnlem4tN |
|- ( ph -> t e. V ) |
| 61 |
1 2 3 5 15 8 9 60
|
hdmapcl |
|- ( ph -> ( S ` t ) e. D ) |
| 62 |
|
eqid |
|- ( -g ` C ) = ( -g ` C ) |
| 63 |
15 16 62
|
lmodsubeq0 |
|- ( ( C e. LMod /\ s e. D /\ ( S ` t ) e. D ) -> ( ( s ( -g ` C ) ( S ` t ) ) = Q <-> s = ( S ` t ) ) ) |
| 64 |
28 30 61 63
|
syl3anc |
|- ( ph -> ( ( s ( -g ` C ) ( S ` t ) ) = Q <-> s = ( S ` t ) ) ) |
| 65 |
59 64
|
mpbid |
|- ( ph -> s = ( S ` t ) ) |