| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmaprnlem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmaprnlem1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmaprnlem1.n |  |-  N = ( LSpan ` U ) | 
						
							| 5 |  | hdmaprnlem1.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | hdmaprnlem1.l |  |-  L = ( LSpan ` C ) | 
						
							| 7 |  | hdmaprnlem1.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 8 |  | hdmaprnlem1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 9 |  | hdmaprnlem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | hdmaprnlem1.se |  |-  ( ph -> s e. ( D \ { Q } ) ) | 
						
							| 11 |  | hdmaprnlem1.ve |  |-  ( ph -> v e. V ) | 
						
							| 12 |  | hdmaprnlem1.e |  |-  ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) | 
						
							| 13 |  | hdmaprnlem1.ue |  |-  ( ph -> u e. V ) | 
						
							| 14 |  | hdmaprnlem1.un |  |-  ( ph -> -. u e. ( N ` { v } ) ) | 
						
							| 15 |  | hdmaprnlem1.d |  |-  D = ( Base ` C ) | 
						
							| 16 |  | hdmaprnlem1.q |  |-  Q = ( 0g ` C ) | 
						
							| 17 |  | hdmaprnlem1.o |  |-  .0. = ( 0g ` U ) | 
						
							| 18 |  | hdmaprnlem1.a |  |-  .+b = ( +g ` C ) | 
						
							| 19 |  | hdmaprnlem1.t2 |  |-  ( ph -> t e. ( ( N ` { v } ) \ { .0. } ) ) | 
						
							| 20 |  | hdmaprnlem1.p |  |-  .+ = ( +g ` U ) | 
						
							| 21 |  | hdmaprnlem1.pt |  |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | hdmaprnlem7N |  |-  ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( L ` { ( ( S ` u ) .+b s ) } ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | hdmaprnlem8N |  |-  ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( M ` ( N ` { t } ) ) ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | hdmaprnlem4N |  |-  ( ph -> ( M ` ( N ` { t } ) ) = ( L ` { s } ) ) | 
						
							| 25 | 23 24 | eleqtrd |  |-  ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( L ` { s } ) ) | 
						
							| 26 | 22 25 | elind |  |-  ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. ( ( L ` { ( ( S ` u ) .+b s ) } ) i^i ( L ` { s } ) ) ) | 
						
							| 27 | 1 5 9 | lcdlvec |  |-  ( ph -> C e. LVec ) | 
						
							| 28 | 1 5 9 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 29 | 1 2 3 5 15 8 9 13 | hdmapcl |  |-  ( ph -> ( S ` u ) e. D ) | 
						
							| 30 | 10 | eldifad |  |-  ( ph -> s e. D ) | 
						
							| 31 | 15 18 | lmodvacl |  |-  ( ( C e. LMod /\ ( S ` u ) e. D /\ s e. D ) -> ( ( S ` u ) .+b s ) e. D ) | 
						
							| 32 | 28 29 30 31 | syl3anc |  |-  ( ph -> ( ( S ` u ) .+b s ) e. D ) | 
						
							| 33 |  | eqid |  |-  ( LSubSp ` C ) = ( LSubSp ` C ) | 
						
							| 34 | 15 33 6 | lspsncl |  |-  ( ( C e. LMod /\ s e. D ) -> ( L ` { s } ) e. ( LSubSp ` C ) ) | 
						
							| 35 | 28 30 34 | syl2anc |  |-  ( ph -> ( L ` { s } ) e. ( LSubSp ` C ) ) | 
						
							| 36 | 1 7 5 33 9 | mapdrn2 |  |-  ( ph -> ran M = ( LSubSp ` C ) ) | 
						
							| 37 | 35 36 | eleqtrrd |  |-  ( ph -> ( L ` { s } ) e. ran M ) | 
						
							| 38 | 1 7 9 37 | mapdcnvid2 |  |-  ( ph -> ( M ` ( `' M ` ( L ` { s } ) ) ) = ( L ` { s } ) ) | 
						
							| 39 | 12 38 | eqtr4d |  |-  ( ph -> ( M ` ( N ` { v } ) ) = ( M ` ( `' M ` ( L ` { s } ) ) ) ) | 
						
							| 40 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 41 | 1 2 9 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 42 | 3 40 4 | lspsncl |  |-  ( ( U e. LMod /\ v e. V ) -> ( N ` { v } ) e. ( LSubSp ` U ) ) | 
						
							| 43 | 41 11 42 | syl2anc |  |-  ( ph -> ( N ` { v } ) e. ( LSubSp ` U ) ) | 
						
							| 44 | 1 7 2 40 9 37 | mapdcnvcl |  |-  ( ph -> ( `' M ` ( L ` { s } ) ) e. ( LSubSp ` U ) ) | 
						
							| 45 | 1 2 40 7 9 43 44 | mapd11 |  |-  ( ph -> ( ( M ` ( N ` { v } ) ) = ( M ` ( `' M ` ( L ` { s } ) ) ) <-> ( N ` { v } ) = ( `' M ` ( L ` { s } ) ) ) ) | 
						
							| 46 | 39 45 | mpbid |  |-  ( ph -> ( N ` { v } ) = ( `' M ` ( L ` { s } ) ) ) | 
						
							| 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | hdmaprnlem3N |  |-  ( ph -> ( N ` { v } ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) ) | 
						
							| 48 | 46 47 | eqnetrrd |  |-  ( ph -> ( `' M ` ( L ` { s } ) ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) ) | 
						
							| 49 | 15 33 6 | lspsncl |  |-  ( ( C e. LMod /\ ( ( S ` u ) .+b s ) e. D ) -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) | 
						
							| 50 | 28 32 49 | syl2anc |  |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) | 
						
							| 51 | 50 36 | eleqtrrd |  |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ran M ) | 
						
							| 52 | 1 7 9 37 51 | mapdcnv11N |  |-  ( ph -> ( ( `' M ` ( L ` { s } ) ) = ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) <-> ( L ` { s } ) = ( L ` { ( ( S ` u ) .+b s ) } ) ) ) | 
						
							| 53 | 52 | necon3bid |  |-  ( ph -> ( ( `' M ` ( L ` { s } ) ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) <-> ( L ` { s } ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) ) ) | 
						
							| 54 | 48 53 | mpbid |  |-  ( ph -> ( L ` { s } ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) ) | 
						
							| 55 | 54 | necomd |  |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) =/= ( L ` { s } ) ) | 
						
							| 56 | 15 16 6 27 32 30 55 | lspdisj2 |  |-  ( ph -> ( ( L ` { ( ( S ` u ) .+b s ) } ) i^i ( L ` { s } ) ) = { Q } ) | 
						
							| 57 | 26 56 | eleqtrd |  |-  ( ph -> ( s ( -g ` C ) ( S ` t ) ) e. { Q } ) | 
						
							| 58 |  | elsni |  |-  ( ( s ( -g ` C ) ( S ` t ) ) e. { Q } -> ( s ( -g ` C ) ( S ` t ) ) = Q ) | 
						
							| 59 | 57 58 | syl |  |-  ( ph -> ( s ( -g ` C ) ( S ` t ) ) = Q ) | 
						
							| 60 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | hdmaprnlem4tN |  |-  ( ph -> t e. V ) | 
						
							| 61 | 1 2 3 5 15 8 9 60 | hdmapcl |  |-  ( ph -> ( S ` t ) e. D ) | 
						
							| 62 |  | eqid |  |-  ( -g ` C ) = ( -g ` C ) | 
						
							| 63 | 15 16 62 | lmodsubeq0 |  |-  ( ( C e. LMod /\ s e. D /\ ( S ` t ) e. D ) -> ( ( s ( -g ` C ) ( S ` t ) ) = Q <-> s = ( S ` t ) ) ) | 
						
							| 64 | 28 30 61 63 | syl3anc |  |-  ( ph -> ( ( s ( -g ` C ) ( S ` t ) ) = Q <-> s = ( S ` t ) ) ) | 
						
							| 65 | 59 64 | mpbid |  |-  ( ph -> s = ( S ` t ) ) |