| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmaprnlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmaprnlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hdmaprnlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
hdmaprnlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 5 |
|
hdmaprnlem1.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
hdmaprnlem1.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
| 7 |
|
hdmaprnlem1.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
hdmaprnlem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
hdmaprnlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
hdmaprnlem1.se |
⊢ ( 𝜑 → 𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
| 11 |
|
hdmaprnlem1.ve |
⊢ ( 𝜑 → 𝑣 ∈ 𝑉 ) |
| 12 |
|
hdmaprnlem1.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
| 13 |
|
hdmaprnlem1.ue |
⊢ ( 𝜑 → 𝑢 ∈ 𝑉 ) |
| 14 |
|
hdmaprnlem1.un |
⊢ ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
| 15 |
|
hdmaprnlem1.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 16 |
|
hdmaprnlem1.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
| 17 |
|
hdmaprnlem1.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 18 |
|
hdmaprnlem1.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
| 19 |
|
hdmaprnlem1.t2 |
⊢ ( 𝜑 → 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) |
| 20 |
|
hdmaprnlem1.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 21 |
|
hdmaprnlem1.pt |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) |
| 22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
hdmaprnlem7N |
⊢ ( 𝜑 → ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) ) ∈ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) |
| 23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
hdmaprnlem8N |
⊢ ( 𝜑 → ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) ) |
| 24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
hdmaprnlem4N |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
| 25 |
23 24
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) ) ∈ ( 𝐿 ‘ { 𝑠 } ) ) |
| 26 |
22 25
|
elind |
⊢ ( 𝜑 → ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) ) ∈ ( ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∩ ( 𝐿 ‘ { 𝑠 } ) ) ) |
| 27 |
1 5 9
|
lcdlvec |
⊢ ( 𝜑 → 𝐶 ∈ LVec ) |
| 28 |
1 5 9
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 29 |
1 2 3 5 15 8 9 13
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑢 ) ∈ 𝐷 ) |
| 30 |
10
|
eldifad |
⊢ ( 𝜑 → 𝑠 ∈ 𝐷 ) |
| 31 |
15 18
|
lmodvacl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑆 ‘ 𝑢 ) ∈ 𝐷 ∧ 𝑠 ∈ 𝐷 ) → ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ 𝐷 ) |
| 32 |
28 29 30 31
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ 𝐷 ) |
| 33 |
|
eqid |
⊢ ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 ) |
| 34 |
15 33 6
|
lspsncl |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝑠 ∈ 𝐷 ) → ( 𝐿 ‘ { 𝑠 } ) ∈ ( LSubSp ‘ 𝐶 ) ) |
| 35 |
28 30 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ { 𝑠 } ) ∈ ( LSubSp ‘ 𝐶 ) ) |
| 36 |
1 7 5 33 9
|
mapdrn2 |
⊢ ( 𝜑 → ran 𝑀 = ( LSubSp ‘ 𝐶 ) ) |
| 37 |
35 36
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐿 ‘ { 𝑠 } ) ∈ ran 𝑀 ) |
| 38 |
1 7 9 37
|
mapdcnvid2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
| 39 |
12 38
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ) ) |
| 40 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 41 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 42 |
3 40 4
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑣 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 43 |
41 11 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 44 |
1 7 2 40 9 37
|
mapdcnvcl |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 45 |
1 2 40 7 9 43 44
|
mapd11 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ) ↔ ( 𝑁 ‘ { 𝑣 } ) = ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ) ) |
| 46 |
39 45
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) = ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ) |
| 47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hdmaprnlem3N |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ≠ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ) |
| 48 |
46 47
|
eqnetrrd |
⊢ ( 𝜑 → ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ≠ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ) |
| 49 |
15 33 6
|
lspsncl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) ∈ 𝐷 ) → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∈ ( LSubSp ‘ 𝐶 ) ) |
| 50 |
28 32 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∈ ( LSubSp ‘ 𝐶 ) ) |
| 51 |
50 36
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∈ ran 𝑀 ) |
| 52 |
1 7 9 37 51
|
mapdcnv11N |
⊢ ( 𝜑 → ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) = ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ↔ ( 𝐿 ‘ { 𝑠 } ) = ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ) |
| 53 |
52
|
necon3bid |
⊢ ( 𝜑 → ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ≠ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ↔ ( 𝐿 ‘ { 𝑠 } ) ≠ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) ) |
| 54 |
48 53
|
mpbid |
⊢ ( 𝜑 → ( 𝐿 ‘ { 𝑠 } ) ≠ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ) |
| 55 |
54
|
necomd |
⊢ ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ≠ ( 𝐿 ‘ { 𝑠 } ) ) |
| 56 |
15 16 6 27 32 30 55
|
lspdisj2 |
⊢ ( 𝜑 → ( ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) ∩ ( 𝐿 ‘ { 𝑠 } ) ) = { 𝑄 } ) |
| 57 |
26 56
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) ) ∈ { 𝑄 } ) |
| 58 |
|
elsni |
⊢ ( ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) ) ∈ { 𝑄 } → ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) ) = 𝑄 ) |
| 59 |
57 58
|
syl |
⊢ ( 𝜑 → ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) ) = 𝑄 ) |
| 60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
hdmaprnlem4tN |
⊢ ( 𝜑 → 𝑡 ∈ 𝑉 ) |
| 61 |
1 2 3 5 15 8 9 60
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑡 ) ∈ 𝐷 ) |
| 62 |
|
eqid |
⊢ ( -g ‘ 𝐶 ) = ( -g ‘ 𝐶 ) |
| 63 |
15 16 62
|
lmodsubeq0 |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝑠 ∈ 𝐷 ∧ ( 𝑆 ‘ 𝑡 ) ∈ 𝐷 ) → ( ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) ) = 𝑄 ↔ 𝑠 = ( 𝑆 ‘ 𝑡 ) ) ) |
| 64 |
28 30 61 63
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) ) = 𝑄 ↔ 𝑠 = ( 𝑆 ‘ 𝑡 ) ) ) |
| 65 |
59 64
|
mpbid |
⊢ ( 𝜑 → 𝑠 = ( 𝑆 ‘ 𝑡 ) ) |