| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmaprnlem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmaprnlem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmaprnlem1.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 5 |  | hdmaprnlem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmaprnlem1.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 7 |  | hdmaprnlem1.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmaprnlem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmaprnlem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | hdmaprnlem1.se | ⊢ ( 𝜑  →  𝑠  ∈  ( 𝐷  ∖  { 𝑄 } ) ) | 
						
							| 11 |  | hdmaprnlem1.ve | ⊢ ( 𝜑  →  𝑣  ∈  𝑉 ) | 
						
							| 12 |  | hdmaprnlem1.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 13 |  | hdmaprnlem1.ue | ⊢ ( 𝜑  →  𝑢  ∈  𝑉 ) | 
						
							| 14 |  | hdmaprnlem1.un | ⊢ ( 𝜑  →  ¬  𝑢  ∈  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 15 |  | hdmaprnlem1.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 16 |  | hdmaprnlem1.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 17 |  | hdmaprnlem1.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 18 |  | hdmaprnlem1.a | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 19 |  | hdmaprnlem1.t2 | ⊢ ( 𝜑  →  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) ) | 
						
							| 20 |  | hdmaprnlem1.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 21 |  | hdmaprnlem1.pt | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | hdmaprnlem7N | ⊢ ( 𝜑  →  ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) )  ∈  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | hdmaprnlem8N | ⊢ ( 𝜑  →  ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) )  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | hdmaprnlem4N | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 25 | 23 24 | eleqtrd | ⊢ ( 𝜑  →  ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) )  ∈  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 26 | 22 25 | elind | ⊢ ( 𝜑  →  ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) )  ∈  ( ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  ∩  ( 𝐿 ‘ { 𝑠 } ) ) ) | 
						
							| 27 | 1 5 9 | lcdlvec | ⊢ ( 𝜑  →  𝐶  ∈  LVec ) | 
						
							| 28 | 1 5 9 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 29 | 1 2 3 5 15 8 9 13 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑢 )  ∈  𝐷 ) | 
						
							| 30 | 10 | eldifad | ⊢ ( 𝜑  →  𝑠  ∈  𝐷 ) | 
						
							| 31 | 15 18 | lmodvacl | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑆 ‘ 𝑢 )  ∈  𝐷  ∧  𝑠  ∈  𝐷 )  →  ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 )  ∈  𝐷 ) | 
						
							| 32 | 28 29 30 31 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 )  ∈  𝐷 ) | 
						
							| 33 |  | eqid | ⊢ ( LSubSp ‘ 𝐶 )  =  ( LSubSp ‘ 𝐶 ) | 
						
							| 34 | 15 33 6 | lspsncl | ⊢ ( ( 𝐶  ∈  LMod  ∧  𝑠  ∈  𝐷 )  →  ( 𝐿 ‘ { 𝑠 } )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 35 | 28 30 34 | syl2anc | ⊢ ( 𝜑  →  ( 𝐿 ‘ { 𝑠 } )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 36 | 1 7 5 33 9 | mapdrn2 | ⊢ ( 𝜑  →  ran  𝑀  =  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 37 | 35 36 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝐿 ‘ { 𝑠 } )  ∈  ran  𝑀 ) | 
						
							| 38 | 1 7 9 37 | mapdcnvid2 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 39 | 12 38 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ) ) | 
						
							| 40 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 41 | 1 2 9 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 42 | 3 40 4 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑣  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑣 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 43 | 41 11 42 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑣 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 44 | 1 7 2 40 9 37 | mapdcnvcl | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 45 | 1 2 40 7 9 43 44 | mapd11 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝑀 ‘ ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) )  ↔  ( 𝑁 ‘ { 𝑣 } )  =  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ) ) | 
						
							| 46 | 39 45 | mpbid | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑣 } )  =  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) ) ) | 
						
							| 47 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | hdmaprnlem3N | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑣 } )  ≠  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) ) ) | 
						
							| 48 | 46 47 | eqnetrrd | ⊢ ( 𝜑  →  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  ≠  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) ) ) | 
						
							| 49 | 15 33 6 | lspsncl | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 )  ∈  𝐷 )  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 50 | 28 32 49 | syl2anc | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 51 | 50 36 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  ∈  ran  𝑀 ) | 
						
							| 52 | 1 7 9 37 51 | mapdcnv11N | ⊢ ( 𝜑  →  ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  =  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  ↔  ( 𝐿 ‘ { 𝑠 } )  =  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) ) ) | 
						
							| 53 | 52 | necon3bid | ⊢ ( 𝜑  →  ( ( ◡ 𝑀 ‘ ( 𝐿 ‘ { 𝑠 } ) )  ≠  ( ◡ 𝑀 ‘ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) )  ↔  ( 𝐿 ‘ { 𝑠 } )  ≠  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) ) ) | 
						
							| 54 | 48 53 | mpbid | ⊢ ( 𝜑  →  ( 𝐿 ‘ { 𝑠 } )  ≠  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } ) ) | 
						
							| 55 | 54 | necomd | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  ≠  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 56 | 15 16 6 27 32 30 55 | lspdisj2 | ⊢ ( 𝜑  →  ( ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  ∩  ( 𝐿 ‘ { 𝑠 } ) )  =  { 𝑄 } ) | 
						
							| 57 | 26 56 | eleqtrd | ⊢ ( 𝜑  →  ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) )  ∈  { 𝑄 } ) | 
						
							| 58 |  | elsni | ⊢ ( ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) )  ∈  { 𝑄 }  →  ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) )  =  𝑄 ) | 
						
							| 59 | 57 58 | syl | ⊢ ( 𝜑  →  ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) )  =  𝑄 ) | 
						
							| 60 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | hdmaprnlem4tN | ⊢ ( 𝜑  →  𝑡  ∈  𝑉 ) | 
						
							| 61 | 1 2 3 5 15 8 9 60 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑡 )  ∈  𝐷 ) | 
						
							| 62 |  | eqid | ⊢ ( -g ‘ 𝐶 )  =  ( -g ‘ 𝐶 ) | 
						
							| 63 | 15 16 62 | lmodsubeq0 | ⊢ ( ( 𝐶  ∈  LMod  ∧  𝑠  ∈  𝐷  ∧  ( 𝑆 ‘ 𝑡 )  ∈  𝐷 )  →  ( ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) )  =  𝑄  ↔  𝑠  =  ( 𝑆 ‘ 𝑡 ) ) ) | 
						
							| 64 | 28 30 61 63 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) )  =  𝑄  ↔  𝑠  =  ( 𝑆 ‘ 𝑡 ) ) ) | 
						
							| 65 | 59 64 | mpbid | ⊢ ( 𝜑  →  𝑠  =  ( 𝑆 ‘ 𝑡 ) ) |