| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmaprnlem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmaprnlem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmaprnlem1.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 5 |  | hdmaprnlem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmaprnlem1.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 7 |  | hdmaprnlem1.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmaprnlem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmaprnlem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | hdmaprnlem1.se | ⊢ ( 𝜑  →  𝑠  ∈  ( 𝐷  ∖  { 𝑄 } ) ) | 
						
							| 11 |  | hdmaprnlem1.ve | ⊢ ( 𝜑  →  𝑣  ∈  𝑉 ) | 
						
							| 12 |  | hdmaprnlem1.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 13 |  | hdmaprnlem1.ue | ⊢ ( 𝜑  →  𝑢  ∈  𝑉 ) | 
						
							| 14 |  | hdmaprnlem1.un | ⊢ ( 𝜑  →  ¬  𝑢  ∈  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 15 |  | hdmaprnlem1.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 16 |  | hdmaprnlem1.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 17 |  | hdmaprnlem1.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 18 |  | hdmaprnlem1.a | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 19 |  | hdmaprnlem1.t2 | ⊢ ( 𝜑  →  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) ) | 
						
							| 20 |  | hdmaprnlem1.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 21 |  | hdmaprnlem1.pt | ⊢ ( 𝜑  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) | 
						
							| 22 | 1 5 9 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 23 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 24 |  | eqid | ⊢ ( LSubSp ‘ 𝐶 )  =  ( LSubSp ‘ 𝐶 ) | 
						
							| 25 | 1 2 9 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 26 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | hdmaprnlem4tN | ⊢ ( 𝜑  →  𝑡  ∈  𝑉 ) | 
						
							| 27 | 3 23 4 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑡  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑡 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 28 | 25 26 27 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑡 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 29 | 1 7 2 23 5 24 9 28 | mapdcl2 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 30 | 10 | eldifad | ⊢ ( 𝜑  →  𝑠  ∈  𝐷 ) | 
						
							| 31 | 15 6 | lspsnid | ⊢ ( ( 𝐶  ∈  LMod  ∧  𝑠  ∈  𝐷 )  →  𝑠  ∈  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 32 | 22 30 31 | syl2anc | ⊢ ( 𝜑  →  𝑠  ∈  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 33 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | hdmaprnlem4N | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 34 | 32 33 | eleqtrrd | ⊢ ( 𝜑  →  𝑠  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) ) | 
						
							| 35 | 1 2 3 5 15 8 9 26 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑡 )  ∈  𝐷 ) | 
						
							| 36 | 15 6 | lspsnid | ⊢ ( ( 𝐶  ∈  LMod  ∧  ( 𝑆 ‘ 𝑡 )  ∈  𝐷 )  →  ( 𝑆 ‘ 𝑡 )  ∈  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑡 ) } ) ) | 
						
							| 37 | 22 35 36 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑡 )  ∈  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑡 ) } ) ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 26 | hdmap10 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) )  =  ( 𝐿 ‘ { ( 𝑆 ‘ 𝑡 ) } ) ) | 
						
							| 39 | 37 38 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑡 )  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) ) | 
						
							| 40 |  | eqid | ⊢ ( -g ‘ 𝐶 )  =  ( -g ‘ 𝐶 ) | 
						
							| 41 | 40 24 | lssvsubcl | ⊢ ( ( ( 𝐶  ∈  LMod  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) )  ∈  ( LSubSp ‘ 𝐶 ) )  ∧  ( 𝑠  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) )  ∧  ( 𝑆 ‘ 𝑡 )  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) ) )  →  ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) )  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) ) | 
						
							| 42 | 22 29 34 39 41 | syl22anc | ⊢ ( 𝜑  →  ( 𝑠 ( -g ‘ 𝐶 ) ( 𝑆 ‘ 𝑡 ) )  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) ) |