Metamath Proof Explorer


Theorem hdmaprnlem8N

Description: Part of proof of part 12 in Baer p. 49 line 19, s-St e. (Ft)* = T*. (Contributed by NM, 27-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmaprnlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem1.v 𝑉 = ( Base ‘ 𝑈 )
hdmaprnlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmaprnlem1.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem1.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmaprnlem1.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem1.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmaprnlem1.se ( 𝜑𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) )
hdmaprnlem1.ve ( 𝜑𝑣𝑉 )
hdmaprnlem1.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) )
hdmaprnlem1.ue ( 𝜑𝑢𝑉 )
hdmaprnlem1.un ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) )
hdmaprnlem1.d 𝐷 = ( Base ‘ 𝐶 )
hdmaprnlem1.q 𝑄 = ( 0g𝐶 )
hdmaprnlem1.o 0 = ( 0g𝑈 )
hdmaprnlem1.a = ( +g𝐶 )
hdmaprnlem1.t2 ( 𝜑𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) )
hdmaprnlem1.p + = ( +g𝑈 )
hdmaprnlem1.pt ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆𝑢 ) 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) )
Assertion hdmaprnlem8N ( 𝜑 → ( 𝑠 ( -g𝐶 ) ( 𝑆𝑡 ) ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) )

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmaprnlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmaprnlem1.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmaprnlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
5 hdmaprnlem1.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 hdmaprnlem1.l 𝐿 = ( LSpan ‘ 𝐶 )
7 hdmaprnlem1.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
8 hdmaprnlem1.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
9 hdmaprnlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 hdmaprnlem1.se ( 𝜑𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) )
11 hdmaprnlem1.ve ( 𝜑𝑣𝑉 )
12 hdmaprnlem1.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) )
13 hdmaprnlem1.ue ( 𝜑𝑢𝑉 )
14 hdmaprnlem1.un ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) )
15 hdmaprnlem1.d 𝐷 = ( Base ‘ 𝐶 )
16 hdmaprnlem1.q 𝑄 = ( 0g𝐶 )
17 hdmaprnlem1.o 0 = ( 0g𝑈 )
18 hdmaprnlem1.a = ( +g𝐶 )
19 hdmaprnlem1.t2 ( 𝜑𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) )
20 hdmaprnlem1.p + = ( +g𝑈 )
21 hdmaprnlem1.pt ( 𝜑 → ( 𝐿 ‘ { ( ( 𝑆𝑢 ) 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) )
22 1 5 9 lcdlmod ( 𝜑𝐶 ∈ LMod )
23 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
24 eqid ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 )
25 1 2 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4tN ( 𝜑𝑡𝑉 )
27 3 23 4 lspsncl ( ( 𝑈 ∈ LMod ∧ 𝑡𝑉 ) → ( 𝑁 ‘ { 𝑡 } ) ∈ ( LSubSp ‘ 𝑈 ) )
28 25 26 27 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑡 } ) ∈ ( LSubSp ‘ 𝑈 ) )
29 1 7 2 23 5 24 9 28 mapdcl2 ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) ∈ ( LSubSp ‘ 𝐶 ) )
30 10 eldifad ( 𝜑𝑠𝐷 )
31 15 6 lspsnid ( ( 𝐶 ∈ LMod ∧ 𝑠𝐷 ) → 𝑠 ∈ ( 𝐿 ‘ { 𝑠 } ) )
32 22 30 31 syl2anc ( 𝜑𝑠 ∈ ( 𝐿 ‘ { 𝑠 } ) )
33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4N ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) = ( 𝐿 ‘ { 𝑠 } ) )
34 32 33 eleqtrrd ( 𝜑𝑠 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) )
35 1 2 3 5 15 8 9 26 hdmapcl ( 𝜑 → ( 𝑆𝑡 ) ∈ 𝐷 )
36 15 6 lspsnid ( ( 𝐶 ∈ LMod ∧ ( 𝑆𝑡 ) ∈ 𝐷 ) → ( 𝑆𝑡 ) ∈ ( 𝐿 ‘ { ( 𝑆𝑡 ) } ) )
37 22 35 36 syl2anc ( 𝜑 → ( 𝑆𝑡 ) ∈ ( 𝐿 ‘ { ( 𝑆𝑡 ) } ) )
38 1 2 3 4 5 6 7 8 9 26 hdmap10 ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) = ( 𝐿 ‘ { ( 𝑆𝑡 ) } ) )
39 37 38 eleqtrrd ( 𝜑 → ( 𝑆𝑡 ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) )
40 eqid ( -g𝐶 ) = ( -g𝐶 )
41 40 24 lssvsubcl ( ( ( 𝐶 ∈ LMod ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ) ∧ ( 𝑠 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) ∧ ( 𝑆𝑡 ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) ) ) → ( 𝑠 ( -g𝐶 ) ( 𝑆𝑡 ) ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) )
42 22 29 34 39 41 syl22anc ( 𝜑 → ( 𝑠 ( -g𝐶 ) ( 𝑆𝑡 ) ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) )