Metamath Proof Explorer


Theorem hdmaprnlem8N

Description: Part of proof of part 12 in Baer p. 49 line 19, s-St e. (Ft)* = T*. (Contributed by NM, 27-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h H=LHypK
hdmaprnlem1.u U=DVecHKW
hdmaprnlem1.v V=BaseU
hdmaprnlem1.n N=LSpanU
hdmaprnlem1.c C=LCDualKW
hdmaprnlem1.l L=LSpanC
hdmaprnlem1.m M=mapdKW
hdmaprnlem1.s S=HDMapKW
hdmaprnlem1.k φKHLWH
hdmaprnlem1.se φsDQ
hdmaprnlem1.ve φvV
hdmaprnlem1.e φMNv=Ls
hdmaprnlem1.ue φuV
hdmaprnlem1.un φ¬uNv
hdmaprnlem1.d D=BaseC
hdmaprnlem1.q Q=0C
hdmaprnlem1.o 0˙=0U
hdmaprnlem1.a ˙=+C
hdmaprnlem1.t2 φtNv0˙
hdmaprnlem1.p +˙=+U
hdmaprnlem1.pt φLSu˙s=MNu+˙t
Assertion hdmaprnlem8N φs-CStMNt

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h H=LHypK
2 hdmaprnlem1.u U=DVecHKW
3 hdmaprnlem1.v V=BaseU
4 hdmaprnlem1.n N=LSpanU
5 hdmaprnlem1.c C=LCDualKW
6 hdmaprnlem1.l L=LSpanC
7 hdmaprnlem1.m M=mapdKW
8 hdmaprnlem1.s S=HDMapKW
9 hdmaprnlem1.k φKHLWH
10 hdmaprnlem1.se φsDQ
11 hdmaprnlem1.ve φvV
12 hdmaprnlem1.e φMNv=Ls
13 hdmaprnlem1.ue φuV
14 hdmaprnlem1.un φ¬uNv
15 hdmaprnlem1.d D=BaseC
16 hdmaprnlem1.q Q=0C
17 hdmaprnlem1.o 0˙=0U
18 hdmaprnlem1.a ˙=+C
19 hdmaprnlem1.t2 φtNv0˙
20 hdmaprnlem1.p +˙=+U
21 hdmaprnlem1.pt φLSu˙s=MNu+˙t
22 1 5 9 lcdlmod φCLMod
23 eqid LSubSpU=LSubSpU
24 eqid LSubSpC=LSubSpC
25 1 2 9 dvhlmod φULMod
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4tN φtV
27 3 23 4 lspsncl ULModtVNtLSubSpU
28 25 26 27 syl2anc φNtLSubSpU
29 1 7 2 23 5 24 9 28 mapdcl2 φMNtLSubSpC
30 10 eldifad φsD
31 15 6 lspsnid CLModsDsLs
32 22 30 31 syl2anc φsLs
33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 hdmaprnlem4N φMNt=Ls
34 32 33 eleqtrrd φsMNt
35 1 2 3 5 15 8 9 26 hdmapcl φStD
36 15 6 lspsnid CLModStDStLSt
37 22 35 36 syl2anc φStLSt
38 1 2 3 4 5 6 7 8 9 26 hdmap10 φMNt=LSt
39 37 38 eleqtrrd φStMNt
40 eqid -C=-C
41 40 24 lssvsubcl CLModMNtLSubSpCsMNtStMNts-CStMNt
42 22 29 34 39 41 syl22anc φs-CStMNt