Metamath Proof Explorer


Theorem hdmaprnlem4N

Description: Part of proof of part 12 in Baer p. 49 line 19. (T* =) (Ft)* = Gs. (Contributed by NM, 27-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmaprnlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmaprnlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem1.v 𝑉 = ( Base ‘ 𝑈 )
hdmaprnlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
hdmaprnlem1.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem1.l 𝐿 = ( LSpan ‘ 𝐶 )
hdmaprnlem1.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem1.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmaprnlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmaprnlem1.se ( 𝜑𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) )
hdmaprnlem1.ve ( 𝜑𝑣𝑉 )
hdmaprnlem1.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) )
hdmaprnlem1.ue ( 𝜑𝑢𝑉 )
hdmaprnlem1.un ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) )
hdmaprnlem1.d 𝐷 = ( Base ‘ 𝐶 )
hdmaprnlem1.q 𝑄 = ( 0g𝐶 )
hdmaprnlem1.o 0 = ( 0g𝑈 )
hdmaprnlem1.a = ( +g𝐶 )
hdmaprnlem1.t2 ( 𝜑𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) )
Assertion hdmaprnlem4N ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) = ( 𝐿 ‘ { 𝑠 } ) )

Proof

Step Hyp Ref Expression
1 hdmaprnlem1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmaprnlem1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmaprnlem1.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmaprnlem1.n 𝑁 = ( LSpan ‘ 𝑈 )
5 hdmaprnlem1.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 hdmaprnlem1.l 𝐿 = ( LSpan ‘ 𝐶 )
7 hdmaprnlem1.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
8 hdmaprnlem1.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
9 hdmaprnlem1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 hdmaprnlem1.se ( 𝜑𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) )
11 hdmaprnlem1.ve ( 𝜑𝑣𝑉 )
12 hdmaprnlem1.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) )
13 hdmaprnlem1.ue ( 𝜑𝑢𝑉 )
14 hdmaprnlem1.un ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) )
15 hdmaprnlem1.d 𝐷 = ( Base ‘ 𝐶 )
16 hdmaprnlem1.q 𝑄 = ( 0g𝐶 )
17 hdmaprnlem1.o 0 = ( 0g𝑈 )
18 hdmaprnlem1.a = ( +g𝐶 )
19 hdmaprnlem1.t2 ( 𝜑𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) )
20 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
21 1 2 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
22 3 20 4 lspsncl ( ( 𝑈 ∈ LMod ∧ 𝑣𝑉 ) → ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) )
23 21 11 22 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) )
24 19 eldifad ( 𝜑𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) )
25 20 4 21 23 24 lspsnel5a ( 𝜑 → ( 𝑁 ‘ { 𝑡 } ) ⊆ ( 𝑁 ‘ { 𝑣 } ) )
26 1 2 9 dvhlvec ( 𝜑𝑈 ∈ LVec )
27 3 20 lss1 ( 𝑈 ∈ LMod → 𝑉 ∈ ( LSubSp ‘ 𝑈 ) )
28 21 27 syl ( 𝜑𝑉 ∈ ( LSubSp ‘ 𝑈 ) )
29 20 4 21 28 11 lspsnel5a ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ⊆ 𝑉 )
30 29 ssdifd ( 𝜑 → ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ⊆ ( 𝑉 ∖ { 0 } ) )
31 30 19 sseldd ( 𝜑𝑡 ∈ ( 𝑉 ∖ { 0 } ) )
32 3 17 4 26 31 11 lspsncmp ( 𝜑 → ( ( 𝑁 ‘ { 𝑡 } ) ⊆ ( 𝑁 ‘ { 𝑣 } ) ↔ ( 𝑁 ‘ { 𝑡 } ) = ( 𝑁 ‘ { 𝑣 } ) ) )
33 25 32 mpbid ( 𝜑 → ( 𝑁 ‘ { 𝑡 } ) = ( 𝑁 ‘ { 𝑣 } ) )
34 33 fveq2d ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) = ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) )
35 34 12 eqtrd ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) = ( 𝐿 ‘ { 𝑠 } ) )