| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmaprnlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmaprnlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hdmaprnlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
hdmaprnlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 5 |
|
hdmaprnlem1.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
hdmaprnlem1.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
| 7 |
|
hdmaprnlem1.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
hdmaprnlem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
hdmaprnlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
hdmaprnlem1.se |
⊢ ( 𝜑 → 𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
| 11 |
|
hdmaprnlem1.ve |
⊢ ( 𝜑 → 𝑣 ∈ 𝑉 ) |
| 12 |
|
hdmaprnlem1.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
| 13 |
|
hdmaprnlem1.ue |
⊢ ( 𝜑 → 𝑢 ∈ 𝑉 ) |
| 14 |
|
hdmaprnlem1.un |
⊢ ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
| 15 |
|
hdmaprnlem1.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 16 |
|
hdmaprnlem1.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
| 17 |
|
hdmaprnlem1.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 18 |
|
hdmaprnlem1.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
| 19 |
|
hdmaprnlem1.t2 |
⊢ ( 𝜑 → 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) |
| 20 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 21 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 22 |
3 20 4
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑣 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 23 |
21 11 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 24 |
19
|
eldifad |
⊢ ( 𝜑 → 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
| 25 |
20 4 21 23 24
|
ellspsn5 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑡 } ) ⊆ ( 𝑁 ‘ { 𝑣 } ) ) |
| 26 |
1 2 9
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 27 |
3 20
|
lss1 |
⊢ ( 𝑈 ∈ LMod → 𝑉 ∈ ( LSubSp ‘ 𝑈 ) ) |
| 28 |
21 27
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ( LSubSp ‘ 𝑈 ) ) |
| 29 |
20 4 21 28 11
|
ellspsn5 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ⊆ 𝑉 ) |
| 30 |
29
|
ssdifd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ⊆ ( 𝑉 ∖ { 0 } ) ) |
| 31 |
30 19
|
sseldd |
⊢ ( 𝜑 → 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 32 |
3 17 4 26 31 11
|
lspsncmp |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑡 } ) ⊆ ( 𝑁 ‘ { 𝑣 } ) ↔ ( 𝑁 ‘ { 𝑡 } ) = ( 𝑁 ‘ { 𝑣 } ) ) ) |
| 33 |
25 32
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑡 } ) = ( 𝑁 ‘ { 𝑣 } ) ) |
| 34 |
33
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) = ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) |
| 35 |
34 12
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |