| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmaprnlem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmaprnlem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmaprnlem1.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 5 |  | hdmaprnlem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmaprnlem1.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 7 |  | hdmaprnlem1.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmaprnlem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmaprnlem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | hdmaprnlem1.se | ⊢ ( 𝜑  →  𝑠  ∈  ( 𝐷  ∖  { 𝑄 } ) ) | 
						
							| 11 |  | hdmaprnlem1.ve | ⊢ ( 𝜑  →  𝑣  ∈  𝑉 ) | 
						
							| 12 |  | hdmaprnlem1.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 13 |  | hdmaprnlem1.ue | ⊢ ( 𝜑  →  𝑢  ∈  𝑉 ) | 
						
							| 14 |  | hdmaprnlem1.un | ⊢ ( 𝜑  →  ¬  𝑢  ∈  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 15 |  | hdmaprnlem1.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 16 |  | hdmaprnlem1.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 17 |  | hdmaprnlem1.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 18 |  | hdmaprnlem1.a | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 19 |  | hdmaprnlem1.t2 | ⊢ ( 𝜑  →  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) ) | 
						
							| 20 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 21 | 1 2 9 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 22 | 3 20 4 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑣  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑣 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 23 | 21 11 22 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑣 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 24 | 19 | eldifad | ⊢ ( 𝜑  →  𝑡  ∈  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 25 | 20 4 21 23 24 | ellspsn5 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑡 } )  ⊆  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 26 | 1 2 9 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 27 | 3 20 | lss1 | ⊢ ( 𝑈  ∈  LMod  →  𝑉  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 28 | 21 27 | syl | ⊢ ( 𝜑  →  𝑉  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 29 | 20 4 21 28 11 | ellspsn5 | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑣 } )  ⊆  𝑉 ) | 
						
							| 30 | 29 | ssdifd | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } )  ⊆  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 31 | 30 19 | sseldd | ⊢ ( 𝜑  →  𝑡  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 32 | 3 17 4 26 31 11 | lspsncmp | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑡 } )  ⊆  ( 𝑁 ‘ { 𝑣 } )  ↔  ( 𝑁 ‘ { 𝑡 } )  =  ( 𝑁 ‘ { 𝑣 } ) ) ) | 
						
							| 33 | 25 32 | mpbid | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑡 } )  =  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) )  =  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) | 
						
							| 35 | 34 12 | eqtrd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) |