Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmaprnlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmaprnlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmaprnlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
hdmaprnlem1.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmaprnlem1.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
7 |
|
hdmaprnlem1.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmaprnlem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmaprnlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
hdmaprnlem1.se |
⊢ ( 𝜑 → 𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
11 |
|
hdmaprnlem1.ve |
⊢ ( 𝜑 → 𝑣 ∈ 𝑉 ) |
12 |
|
hdmaprnlem1.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
13 |
|
hdmaprnlem1.ue |
⊢ ( 𝜑 → 𝑢 ∈ 𝑉 ) |
14 |
|
hdmaprnlem1.un |
⊢ ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
15 |
|
hdmaprnlem1.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
16 |
|
hdmaprnlem1.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
17 |
|
hdmaprnlem1.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
18 |
|
hdmaprnlem1.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
19 |
|
hdmaprnlem1.t2 |
⊢ ( 𝜑 → 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) |
20 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
21 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
22 |
3 20 4
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑣 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
23 |
21 11 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
24 |
19
|
eldifad |
⊢ ( 𝜑 → 𝑡 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
25 |
20 4 21 23 24
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑡 } ) ⊆ ( 𝑁 ‘ { 𝑣 } ) ) |
26 |
1 2 9
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
27 |
3 20
|
lss1 |
⊢ ( 𝑈 ∈ LMod → 𝑉 ∈ ( LSubSp ‘ 𝑈 ) ) |
28 |
21 27
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ( LSubSp ‘ 𝑈 ) ) |
29 |
20 4 21 28 11
|
lspsnel5a |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑣 } ) ⊆ 𝑉 ) |
30 |
29
|
ssdifd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ⊆ ( 𝑉 ∖ { 0 } ) ) |
31 |
30 19
|
sseldd |
⊢ ( 𝜑 → 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ) |
32 |
3 17 4 26 31 11
|
lspsncmp |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑡 } ) ⊆ ( 𝑁 ‘ { 𝑣 } ) ↔ ( 𝑁 ‘ { 𝑡 } ) = ( 𝑁 ‘ { 𝑣 } ) ) ) |
33 |
25 32
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑡 } ) = ( 𝑁 ‘ { 𝑣 } ) ) |
34 |
33
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) = ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) ) |
35 |
34 12
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑡 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |