Description: Lemma for hdmaprnN . TODO: This lemma doesn't quite pay for itself even though used six times. Maybe prove this directly instead. (Contributed by NM, 27-May-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hdmaprnlem1.h | |- H = ( LHyp ` K ) |
|
hdmaprnlem1.u | |- U = ( ( DVecH ` K ) ` W ) |
||
hdmaprnlem1.v | |- V = ( Base ` U ) |
||
hdmaprnlem1.n | |- N = ( LSpan ` U ) |
||
hdmaprnlem1.c | |- C = ( ( LCDual ` K ) ` W ) |
||
hdmaprnlem1.l | |- L = ( LSpan ` C ) |
||
hdmaprnlem1.m | |- M = ( ( mapd ` K ) ` W ) |
||
hdmaprnlem1.s | |- S = ( ( HDMap ` K ) ` W ) |
||
hdmaprnlem1.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
hdmaprnlem1.se | |- ( ph -> s e. ( D \ { Q } ) ) |
||
hdmaprnlem1.ve | |- ( ph -> v e. V ) |
||
hdmaprnlem1.e | |- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
||
hdmaprnlem1.ue | |- ( ph -> u e. V ) |
||
hdmaprnlem1.un | |- ( ph -> -. u e. ( N ` { v } ) ) |
||
hdmaprnlem1.d | |- D = ( Base ` C ) |
||
hdmaprnlem1.q | |- Q = ( 0g ` C ) |
||
hdmaprnlem1.o | |- .0. = ( 0g ` U ) |
||
hdmaprnlem1.a | |- .+b = ( +g ` C ) |
||
hdmaprnlem1.t2 | |- ( ph -> t e. ( ( N ` { v } ) \ { .0. } ) ) |
||
Assertion | hdmaprnlem4tN | |- ( ph -> t e. V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaprnlem1.h | |- H = ( LHyp ` K ) |
|
2 | hdmaprnlem1.u | |- U = ( ( DVecH ` K ) ` W ) |
|
3 | hdmaprnlem1.v | |- V = ( Base ` U ) |
|
4 | hdmaprnlem1.n | |- N = ( LSpan ` U ) |
|
5 | hdmaprnlem1.c | |- C = ( ( LCDual ` K ) ` W ) |
|
6 | hdmaprnlem1.l | |- L = ( LSpan ` C ) |
|
7 | hdmaprnlem1.m | |- M = ( ( mapd ` K ) ` W ) |
|
8 | hdmaprnlem1.s | |- S = ( ( HDMap ` K ) ` W ) |
|
9 | hdmaprnlem1.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
10 | hdmaprnlem1.se | |- ( ph -> s e. ( D \ { Q } ) ) |
|
11 | hdmaprnlem1.ve | |- ( ph -> v e. V ) |
|
12 | hdmaprnlem1.e | |- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
|
13 | hdmaprnlem1.ue | |- ( ph -> u e. V ) |
|
14 | hdmaprnlem1.un | |- ( ph -> -. u e. ( N ` { v } ) ) |
|
15 | hdmaprnlem1.d | |- D = ( Base ` C ) |
|
16 | hdmaprnlem1.q | |- Q = ( 0g ` C ) |
|
17 | hdmaprnlem1.o | |- .0. = ( 0g ` U ) |
|
18 | hdmaprnlem1.a | |- .+b = ( +g ` C ) |
|
19 | hdmaprnlem1.t2 | |- ( ph -> t e. ( ( N ` { v } ) \ { .0. } ) ) |
|
20 | 1 2 9 | dvhlmod | |- ( ph -> U e. LMod ) |
21 | 11 | snssd | |- ( ph -> { v } C_ V ) |
22 | 3 4 | lspssv | |- ( ( U e. LMod /\ { v } C_ V ) -> ( N ` { v } ) C_ V ) |
23 | 20 21 22 | syl2anc | |- ( ph -> ( N ` { v } ) C_ V ) |
24 | 23 | ssdifssd | |- ( ph -> ( ( N ` { v } ) \ { .0. } ) C_ V ) |
25 | 24 19 | sseldd | |- ( ph -> t e. V ) |