| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmaprnlem1.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmaprnlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmaprnlem1.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmaprnlem1.n |
|- N = ( LSpan ` U ) |
| 5 |
|
hdmaprnlem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 6 |
|
hdmaprnlem1.l |
|- L = ( LSpan ` C ) |
| 7 |
|
hdmaprnlem1.m |
|- M = ( ( mapd ` K ) ` W ) |
| 8 |
|
hdmaprnlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 9 |
|
hdmaprnlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
hdmaprnlem1.se |
|- ( ph -> s e. ( D \ { Q } ) ) |
| 11 |
|
hdmaprnlem1.ve |
|- ( ph -> v e. V ) |
| 12 |
|
hdmaprnlem1.e |
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
| 13 |
|
hdmaprnlem1.ue |
|- ( ph -> u e. V ) |
| 14 |
|
hdmaprnlem1.un |
|- ( ph -> -. u e. ( N ` { v } ) ) |
| 15 |
|
hdmaprnlem1.d |
|- D = ( Base ` C ) |
| 16 |
|
hdmaprnlem1.q |
|- Q = ( 0g ` C ) |
| 17 |
|
hdmaprnlem1.o |
|- .0. = ( 0g ` U ) |
| 18 |
|
hdmaprnlem1.a |
|- .+b = ( +g ` C ) |
| 19 |
|
hdmaprnlem3e.p |
|- .+ = ( +g ` U ) |
| 20 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
| 21 |
1 2 9
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 22 |
|
eqid |
|- ( LSAtoms ` C ) = ( LSAtoms ` C ) |
| 23 |
1 5 9
|
lcdlmod |
|- ( ph -> C e. LMod ) |
| 24 |
1 2 3 5 15 8 9 13
|
hdmapcl |
|- ( ph -> ( S ` u ) e. D ) |
| 25 |
10
|
eldifad |
|- ( ph -> s e. D ) |
| 26 |
15 18
|
lmodvacl |
|- ( ( C e. LMod /\ ( S ` u ) e. D /\ s e. D ) -> ( ( S ` u ) .+b s ) e. D ) |
| 27 |
23 24 25 26
|
syl3anc |
|- ( ph -> ( ( S ` u ) .+b s ) e. D ) |
| 28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
hdmaprnlem1N |
|- ( ph -> ( L ` { ( S ` u ) } ) =/= ( L ` { s } ) ) |
| 29 |
15 18 16 6 23 24 25 28
|
lmodindp1 |
|- ( ph -> ( ( S ` u ) .+b s ) =/= Q ) |
| 30 |
|
eldifsn |
|- ( ( ( S ` u ) .+b s ) e. ( D \ { Q } ) <-> ( ( ( S ` u ) .+b s ) e. D /\ ( ( S ` u ) .+b s ) =/= Q ) ) |
| 31 |
27 29 30
|
sylanbrc |
|- ( ph -> ( ( S ` u ) .+b s ) e. ( D \ { Q } ) ) |
| 32 |
15 6 16 22 23 31
|
lsatlspsn |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSAtoms ` C ) ) |
| 33 |
1 7 2 20 5 22 9 32
|
mapdcnvatN |
|- ( ph -> ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) e. ( LSAtoms ` U ) ) |
| 34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hdmaprnlem3uN |
|- ( ph -> ( N ` { u } ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |
| 35 |
34
|
necomd |
|- ( ph -> ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) =/= ( N ` { u } ) ) |
| 36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
hdmaprnlem3N |
|- ( ph -> ( N ` { v } ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |
| 37 |
36
|
necomd |
|- ( ph -> ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) =/= ( N ` { v } ) ) |
| 38 |
|
eqid |
|- ( LSubSp ` C ) = ( LSubSp ` C ) |
| 39 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 40 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 41 |
3 39 4
|
lspsncl |
|- ( ( U e. LMod /\ u e. V ) -> ( N ` { u } ) e. ( LSubSp ` U ) ) |
| 42 |
40 13 41
|
syl2anc |
|- ( ph -> ( N ` { u } ) e. ( LSubSp ` U ) ) |
| 43 |
1 7 2 39 5 38 9 42
|
mapdcl2 |
|- ( ph -> ( M ` ( N ` { u } ) ) e. ( LSubSp ` C ) ) |
| 44 |
3 39 4
|
lspsncl |
|- ( ( U e. LMod /\ v e. V ) -> ( N ` { v } ) e. ( LSubSp ` U ) ) |
| 45 |
40 11 44
|
syl2anc |
|- ( ph -> ( N ` { v } ) e. ( LSubSp ` U ) ) |
| 46 |
1 7 2 39 5 38 9 45
|
mapdcl2 |
|- ( ph -> ( M ` ( N ` { v } ) ) e. ( LSubSp ` C ) ) |
| 47 |
|
eqid |
|- ( LSSum ` C ) = ( LSSum ` C ) |
| 48 |
38 47
|
lsmcl |
|- ( ( C e. LMod /\ ( M ` ( N ` { u } ) ) e. ( LSubSp ` C ) /\ ( M ` ( N ` { v } ) ) e. ( LSubSp ` C ) ) -> ( ( M ` ( N ` { u } ) ) ( LSSum ` C ) ( M ` ( N ` { v } ) ) ) e. ( LSubSp ` C ) ) |
| 49 |
23 43 46 48
|
syl3anc |
|- ( ph -> ( ( M ` ( N ` { u } ) ) ( LSSum ` C ) ( M ` ( N ` { v } ) ) ) e. ( LSubSp ` C ) ) |
| 50 |
38
|
lsssssubg |
|- ( C e. LMod -> ( LSubSp ` C ) C_ ( SubGrp ` C ) ) |
| 51 |
23 50
|
syl |
|- ( ph -> ( LSubSp ` C ) C_ ( SubGrp ` C ) ) |
| 52 |
51 43
|
sseldd |
|- ( ph -> ( M ` ( N ` { u } ) ) e. ( SubGrp ` C ) ) |
| 53 |
51 46
|
sseldd |
|- ( ph -> ( M ` ( N ` { v } ) ) e. ( SubGrp ` C ) ) |
| 54 |
15 6
|
lspsnid |
|- ( ( C e. LMod /\ ( S ` u ) e. D ) -> ( S ` u ) e. ( L ` { ( S ` u ) } ) ) |
| 55 |
23 24 54
|
syl2anc |
|- ( ph -> ( S ` u ) e. ( L ` { ( S ` u ) } ) ) |
| 56 |
1 2 3 4 5 6 7 8 9 13
|
hdmap10 |
|- ( ph -> ( M ` ( N ` { u } ) ) = ( L ` { ( S ` u ) } ) ) |
| 57 |
55 56
|
eleqtrrd |
|- ( ph -> ( S ` u ) e. ( M ` ( N ` { u } ) ) ) |
| 58 |
|
eqimss2 |
|- ( ( M ` ( N ` { v } ) ) = ( L ` { s } ) -> ( L ` { s } ) C_ ( M ` ( N ` { v } ) ) ) |
| 59 |
12 58
|
syl |
|- ( ph -> ( L ` { s } ) C_ ( M ` ( N ` { v } ) ) ) |
| 60 |
15 38 6 23 46 25
|
ellspsn5b |
|- ( ph -> ( s e. ( M ` ( N ` { v } ) ) <-> ( L ` { s } ) C_ ( M ` ( N ` { v } ) ) ) ) |
| 61 |
59 60
|
mpbird |
|- ( ph -> s e. ( M ` ( N ` { v } ) ) ) |
| 62 |
18 47
|
lsmelvali |
|- ( ( ( ( M ` ( N ` { u } ) ) e. ( SubGrp ` C ) /\ ( M ` ( N ` { v } ) ) e. ( SubGrp ` C ) ) /\ ( ( S ` u ) e. ( M ` ( N ` { u } ) ) /\ s e. ( M ` ( N ` { v } ) ) ) ) -> ( ( S ` u ) .+b s ) e. ( ( M ` ( N ` { u } ) ) ( LSSum ` C ) ( M ` ( N ` { v } ) ) ) ) |
| 63 |
52 53 57 61 62
|
syl22anc |
|- ( ph -> ( ( S ` u ) .+b s ) e. ( ( M ` ( N ` { u } ) ) ( LSSum ` C ) ( M ` ( N ` { v } ) ) ) ) |
| 64 |
38 6 23 49 63
|
ellspsn5 |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) C_ ( ( M ` ( N ` { u } ) ) ( LSSum ` C ) ( M ` ( N ` { v } ) ) ) ) |
| 65 |
|
eqid |
|- ( LSSum ` U ) = ( LSSum ` U ) |
| 66 |
1 7 2 39 65 5 47 9 42 45
|
mapdlsm |
|- ( ph -> ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) = ( ( M ` ( N ` { u } ) ) ( LSSum ` C ) ( M ` ( N ` { v } ) ) ) ) |
| 67 |
64 66
|
sseqtrrd |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) C_ ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) ) |
| 68 |
15 38 6
|
lspsncl |
|- ( ( C e. LMod /\ ( ( S ` u ) .+b s ) e. D ) -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) |
| 69 |
23 27 68
|
syl2anc |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) |
| 70 |
1 7 5 38 9
|
mapdrn2 |
|- ( ph -> ran M = ( LSubSp ` C ) ) |
| 71 |
69 70
|
eleqtrrd |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ran M ) |
| 72 |
39 65
|
lsmcl |
|- ( ( U e. LMod /\ ( N ` { u } ) e. ( LSubSp ` U ) /\ ( N ` { v } ) e. ( LSubSp ` U ) ) -> ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) e. ( LSubSp ` U ) ) |
| 73 |
40 42 45 72
|
syl3anc |
|- ( ph -> ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) e. ( LSubSp ` U ) ) |
| 74 |
1 7 2 39 9 73
|
mapdcl |
|- ( ph -> ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) e. ran M ) |
| 75 |
1 7 9 71 74
|
mapdcnvordN |
|- ( ph -> ( ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) C_ ( `' M ` ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) ) <-> ( L ` { ( ( S ` u ) .+b s ) } ) C_ ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) ) ) |
| 76 |
67 75
|
mpbird |
|- ( ph -> ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) C_ ( `' M ` ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) ) ) |
| 77 |
3 4 65 40 13 11
|
lsmpr |
|- ( ph -> ( N ` { u , v } ) = ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) |
| 78 |
1 7 2 39 9 73
|
mapdcnvid1N |
|- ( ph -> ( `' M ` ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) ) = ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) |
| 79 |
77 78
|
eqtr4d |
|- ( ph -> ( N ` { u , v } ) = ( `' M ` ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) ) ) |
| 80 |
76 79
|
sseqtrrd |
|- ( ph -> ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) C_ ( N ` { u , v } ) ) |
| 81 |
3 19 17 4 20 21 33 13 11 35 37 80
|
lsatfixedN |
|- ( ph -> E. t e. ( ( N ` { v } ) \ { .0. } ) ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) |
| 82 |
|
simpr |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) |
| 83 |
9
|
ad2antrr |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( K e. HL /\ W e. H ) ) |
| 84 |
40
|
ad2antrr |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> U e. LMod ) |
| 85 |
13
|
ad2antrr |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> u e. V ) |
| 86 |
10
|
ad2antrr |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> s e. ( D \ { Q } ) ) |
| 87 |
11
|
ad2antrr |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> v e. V ) |
| 88 |
12
|
ad2antrr |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
| 89 |
14
|
ad2antrr |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> -. u e. ( N ` { v } ) ) |
| 90 |
|
simplr |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> t e. ( ( N ` { v } ) \ { .0. } ) ) |
| 91 |
1 2 3 4 5 6 7 8 83 86 87 88 85 89 15 16 17 18 90
|
hdmaprnlem4tN |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> t e. V ) |
| 92 |
3 19
|
lmodvacl |
|- ( ( U e. LMod /\ u e. V /\ t e. V ) -> ( u .+ t ) e. V ) |
| 93 |
84 85 91 92
|
syl3anc |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( u .+ t ) e. V ) |
| 94 |
3 39 4
|
lspsncl |
|- ( ( U e. LMod /\ ( u .+ t ) e. V ) -> ( N ` { ( u .+ t ) } ) e. ( LSubSp ` U ) ) |
| 95 |
84 93 94
|
syl2anc |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( N ` { ( u .+ t ) } ) e. ( LSubSp ` U ) ) |
| 96 |
1 7 2 39 83 95
|
mapdcnvid1N |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( `' M ` ( M ` ( N ` { ( u .+ t ) } ) ) ) = ( N ` { ( u .+ t ) } ) ) |
| 97 |
82 96
|
eqtr4d |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( `' M ` ( M ` ( N ` { ( u .+ t ) } ) ) ) ) |
| 98 |
71
|
ad2antrr |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ran M ) |
| 99 |
1 7 2 39 83 95
|
mapdcl |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( M ` ( N ` { ( u .+ t ) } ) ) e. ran M ) |
| 100 |
1 7 83 98 99
|
mapdcnv11N |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( `' M ` ( M ` ( N ` { ( u .+ t ) } ) ) ) <-> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) |
| 101 |
97 100
|
mpbid |
|- ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) |
| 102 |
101
|
ex |
|- ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) -> ( ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) |
| 103 |
102
|
reximdva |
|- ( ph -> ( E. t e. ( ( N ` { v } ) \ { .0. } ) ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) -> E. t e. ( ( N ` { v } ) \ { .0. } ) ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) |
| 104 |
81 103
|
mpd |
|- ( ph -> E. t e. ( ( N ` { v } ) \ { .0. } ) ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) |