| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmaprnlem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmaprnlem1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmaprnlem1.n |  |-  N = ( LSpan ` U ) | 
						
							| 5 |  | hdmaprnlem1.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | hdmaprnlem1.l |  |-  L = ( LSpan ` C ) | 
						
							| 7 |  | hdmaprnlem1.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 8 |  | hdmaprnlem1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 9 |  | hdmaprnlem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | hdmaprnlem1.se |  |-  ( ph -> s e. ( D \ { Q } ) ) | 
						
							| 11 |  | hdmaprnlem1.ve |  |-  ( ph -> v e. V ) | 
						
							| 12 |  | hdmaprnlem1.e |  |-  ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) | 
						
							| 13 |  | hdmaprnlem1.ue |  |-  ( ph -> u e. V ) | 
						
							| 14 |  | hdmaprnlem1.un |  |-  ( ph -> -. u e. ( N ` { v } ) ) | 
						
							| 15 |  | hdmaprnlem1.d |  |-  D = ( Base ` C ) | 
						
							| 16 |  | hdmaprnlem1.q |  |-  Q = ( 0g ` C ) | 
						
							| 17 |  | hdmaprnlem1.o |  |-  .0. = ( 0g ` U ) | 
						
							| 18 |  | hdmaprnlem1.a |  |-  .+b = ( +g ` C ) | 
						
							| 19 |  | hdmaprnlem3e.p |  |-  .+ = ( +g ` U ) | 
						
							| 20 |  | eqid |  |-  ( LSAtoms ` U ) = ( LSAtoms ` U ) | 
						
							| 21 | 1 2 9 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 22 |  | eqid |  |-  ( LSAtoms ` C ) = ( LSAtoms ` C ) | 
						
							| 23 | 1 5 9 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 24 | 1 2 3 5 15 8 9 13 | hdmapcl |  |-  ( ph -> ( S ` u ) e. D ) | 
						
							| 25 | 10 | eldifad |  |-  ( ph -> s e. D ) | 
						
							| 26 | 15 18 | lmodvacl |  |-  ( ( C e. LMod /\ ( S ` u ) e. D /\ s e. D ) -> ( ( S ` u ) .+b s ) e. D ) | 
						
							| 27 | 23 24 25 26 | syl3anc |  |-  ( ph -> ( ( S ` u ) .+b s ) e. D ) | 
						
							| 28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | hdmaprnlem1N |  |-  ( ph -> ( L ` { ( S ` u ) } ) =/= ( L ` { s } ) ) | 
						
							| 29 | 15 18 16 6 23 24 25 28 | lmodindp1 |  |-  ( ph -> ( ( S ` u ) .+b s ) =/= Q ) | 
						
							| 30 |  | eldifsn |  |-  ( ( ( S ` u ) .+b s ) e. ( D \ { Q } ) <-> ( ( ( S ` u ) .+b s ) e. D /\ ( ( S ` u ) .+b s ) =/= Q ) ) | 
						
							| 31 | 27 29 30 | sylanbrc |  |-  ( ph -> ( ( S ` u ) .+b s ) e. ( D \ { Q } ) ) | 
						
							| 32 | 15 6 16 22 23 31 | lsatlspsn |  |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSAtoms ` C ) ) | 
						
							| 33 | 1 7 2 20 5 22 9 32 | mapdcnvatN |  |-  ( ph -> ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) e. ( LSAtoms ` U ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | hdmaprnlem3uN |  |-  ( ph -> ( N ` { u } ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) ) | 
						
							| 35 | 34 | necomd |  |-  ( ph -> ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) =/= ( N ` { u } ) ) | 
						
							| 36 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | hdmaprnlem3N |  |-  ( ph -> ( N ` { v } ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) ) | 
						
							| 37 | 36 | necomd |  |-  ( ph -> ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) =/= ( N ` { v } ) ) | 
						
							| 38 |  | eqid |  |-  ( LSubSp ` C ) = ( LSubSp ` C ) | 
						
							| 39 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 40 | 1 2 9 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 41 | 3 39 4 | lspsncl |  |-  ( ( U e. LMod /\ u e. V ) -> ( N ` { u } ) e. ( LSubSp ` U ) ) | 
						
							| 42 | 40 13 41 | syl2anc |  |-  ( ph -> ( N ` { u } ) e. ( LSubSp ` U ) ) | 
						
							| 43 | 1 7 2 39 5 38 9 42 | mapdcl2 |  |-  ( ph -> ( M ` ( N ` { u } ) ) e. ( LSubSp ` C ) ) | 
						
							| 44 | 3 39 4 | lspsncl |  |-  ( ( U e. LMod /\ v e. V ) -> ( N ` { v } ) e. ( LSubSp ` U ) ) | 
						
							| 45 | 40 11 44 | syl2anc |  |-  ( ph -> ( N ` { v } ) e. ( LSubSp ` U ) ) | 
						
							| 46 | 1 7 2 39 5 38 9 45 | mapdcl2 |  |-  ( ph -> ( M ` ( N ` { v } ) ) e. ( LSubSp ` C ) ) | 
						
							| 47 |  | eqid |  |-  ( LSSum ` C ) = ( LSSum ` C ) | 
						
							| 48 | 38 47 | lsmcl |  |-  ( ( C e. LMod /\ ( M ` ( N ` { u } ) ) e. ( LSubSp ` C ) /\ ( M ` ( N ` { v } ) ) e. ( LSubSp ` C ) ) -> ( ( M ` ( N ` { u } ) ) ( LSSum ` C ) ( M ` ( N ` { v } ) ) ) e. ( LSubSp ` C ) ) | 
						
							| 49 | 23 43 46 48 | syl3anc |  |-  ( ph -> ( ( M ` ( N ` { u } ) ) ( LSSum ` C ) ( M ` ( N ` { v } ) ) ) e. ( LSubSp ` C ) ) | 
						
							| 50 | 38 | lsssssubg |  |-  ( C e. LMod -> ( LSubSp ` C ) C_ ( SubGrp ` C ) ) | 
						
							| 51 | 23 50 | syl |  |-  ( ph -> ( LSubSp ` C ) C_ ( SubGrp ` C ) ) | 
						
							| 52 | 51 43 | sseldd |  |-  ( ph -> ( M ` ( N ` { u } ) ) e. ( SubGrp ` C ) ) | 
						
							| 53 | 51 46 | sseldd |  |-  ( ph -> ( M ` ( N ` { v } ) ) e. ( SubGrp ` C ) ) | 
						
							| 54 | 15 6 | lspsnid |  |-  ( ( C e. LMod /\ ( S ` u ) e. D ) -> ( S ` u ) e. ( L ` { ( S ` u ) } ) ) | 
						
							| 55 | 23 24 54 | syl2anc |  |-  ( ph -> ( S ` u ) e. ( L ` { ( S ` u ) } ) ) | 
						
							| 56 | 1 2 3 4 5 6 7 8 9 13 | hdmap10 |  |-  ( ph -> ( M ` ( N ` { u } ) ) = ( L ` { ( S ` u ) } ) ) | 
						
							| 57 | 55 56 | eleqtrrd |  |-  ( ph -> ( S ` u ) e. ( M ` ( N ` { u } ) ) ) | 
						
							| 58 |  | eqimss2 |  |-  ( ( M ` ( N ` { v } ) ) = ( L ` { s } ) -> ( L ` { s } ) C_ ( M ` ( N ` { v } ) ) ) | 
						
							| 59 | 12 58 | syl |  |-  ( ph -> ( L ` { s } ) C_ ( M ` ( N ` { v } ) ) ) | 
						
							| 60 | 15 38 6 23 46 25 | ellspsn5b |  |-  ( ph -> ( s e. ( M ` ( N ` { v } ) ) <-> ( L ` { s } ) C_ ( M ` ( N ` { v } ) ) ) ) | 
						
							| 61 | 59 60 | mpbird |  |-  ( ph -> s e. ( M ` ( N ` { v } ) ) ) | 
						
							| 62 | 18 47 | lsmelvali |  |-  ( ( ( ( M ` ( N ` { u } ) ) e. ( SubGrp ` C ) /\ ( M ` ( N ` { v } ) ) e. ( SubGrp ` C ) ) /\ ( ( S ` u ) e. ( M ` ( N ` { u } ) ) /\ s e. ( M ` ( N ` { v } ) ) ) ) -> ( ( S ` u ) .+b s ) e. ( ( M ` ( N ` { u } ) ) ( LSSum ` C ) ( M ` ( N ` { v } ) ) ) ) | 
						
							| 63 | 52 53 57 61 62 | syl22anc |  |-  ( ph -> ( ( S ` u ) .+b s ) e. ( ( M ` ( N ` { u } ) ) ( LSSum ` C ) ( M ` ( N ` { v } ) ) ) ) | 
						
							| 64 | 38 6 23 49 63 | ellspsn5 |  |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) C_ ( ( M ` ( N ` { u } ) ) ( LSSum ` C ) ( M ` ( N ` { v } ) ) ) ) | 
						
							| 65 |  | eqid |  |-  ( LSSum ` U ) = ( LSSum ` U ) | 
						
							| 66 | 1 7 2 39 65 5 47 9 42 45 | mapdlsm |  |-  ( ph -> ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) = ( ( M ` ( N ` { u } ) ) ( LSSum ` C ) ( M ` ( N ` { v } ) ) ) ) | 
						
							| 67 | 64 66 | sseqtrrd |  |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) C_ ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) ) | 
						
							| 68 | 15 38 6 | lspsncl |  |-  ( ( C e. LMod /\ ( ( S ` u ) .+b s ) e. D ) -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) | 
						
							| 69 | 23 27 68 | syl2anc |  |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) | 
						
							| 70 | 1 7 5 38 9 | mapdrn2 |  |-  ( ph -> ran M = ( LSubSp ` C ) ) | 
						
							| 71 | 69 70 | eleqtrrd |  |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ran M ) | 
						
							| 72 | 39 65 | lsmcl |  |-  ( ( U e. LMod /\ ( N ` { u } ) e. ( LSubSp ` U ) /\ ( N ` { v } ) e. ( LSubSp ` U ) ) -> ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) e. ( LSubSp ` U ) ) | 
						
							| 73 | 40 42 45 72 | syl3anc |  |-  ( ph -> ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) e. ( LSubSp ` U ) ) | 
						
							| 74 | 1 7 2 39 9 73 | mapdcl |  |-  ( ph -> ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) e. ran M ) | 
						
							| 75 | 1 7 9 71 74 | mapdcnvordN |  |-  ( ph -> ( ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) C_ ( `' M ` ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) ) <-> ( L ` { ( ( S ` u ) .+b s ) } ) C_ ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) ) ) | 
						
							| 76 | 67 75 | mpbird |  |-  ( ph -> ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) C_ ( `' M ` ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) ) ) | 
						
							| 77 | 3 4 65 40 13 11 | lsmpr |  |-  ( ph -> ( N ` { u , v } ) = ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) | 
						
							| 78 | 1 7 2 39 9 73 | mapdcnvid1N |  |-  ( ph -> ( `' M ` ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) ) = ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) | 
						
							| 79 | 77 78 | eqtr4d |  |-  ( ph -> ( N ` { u , v } ) = ( `' M ` ( M ` ( ( N ` { u } ) ( LSSum ` U ) ( N ` { v } ) ) ) ) ) | 
						
							| 80 | 76 79 | sseqtrrd |  |-  ( ph -> ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) C_ ( N ` { u , v } ) ) | 
						
							| 81 | 3 19 17 4 20 21 33 13 11 35 37 80 | lsatfixedN |  |-  ( ph -> E. t e. ( ( N ` { v } ) \ { .0. } ) ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) | 
						
							| 82 |  | simpr |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) | 
						
							| 83 | 9 | ad2antrr |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 84 | 40 | ad2antrr |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> U e. LMod ) | 
						
							| 85 | 13 | ad2antrr |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> u e. V ) | 
						
							| 86 | 10 | ad2antrr |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> s e. ( D \ { Q } ) ) | 
						
							| 87 | 11 | ad2antrr |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> v e. V ) | 
						
							| 88 | 12 | ad2antrr |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) | 
						
							| 89 | 14 | ad2antrr |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> -. u e. ( N ` { v } ) ) | 
						
							| 90 |  | simplr |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> t e. ( ( N ` { v } ) \ { .0. } ) ) | 
						
							| 91 | 1 2 3 4 5 6 7 8 83 86 87 88 85 89 15 16 17 18 90 | hdmaprnlem4tN |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> t e. V ) | 
						
							| 92 | 3 19 | lmodvacl |  |-  ( ( U e. LMod /\ u e. V /\ t e. V ) -> ( u .+ t ) e. V ) | 
						
							| 93 | 84 85 91 92 | syl3anc |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( u .+ t ) e. V ) | 
						
							| 94 | 3 39 4 | lspsncl |  |-  ( ( U e. LMod /\ ( u .+ t ) e. V ) -> ( N ` { ( u .+ t ) } ) e. ( LSubSp ` U ) ) | 
						
							| 95 | 84 93 94 | syl2anc |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( N ` { ( u .+ t ) } ) e. ( LSubSp ` U ) ) | 
						
							| 96 | 1 7 2 39 83 95 | mapdcnvid1N |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( `' M ` ( M ` ( N ` { ( u .+ t ) } ) ) ) = ( N ` { ( u .+ t ) } ) ) | 
						
							| 97 | 82 96 | eqtr4d |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( `' M ` ( M ` ( N ` { ( u .+ t ) } ) ) ) ) | 
						
							| 98 | 71 | ad2antrr |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ran M ) | 
						
							| 99 | 1 7 2 39 83 95 | mapdcl |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( M ` ( N ` { ( u .+ t ) } ) ) e. ran M ) | 
						
							| 100 | 1 7 83 98 99 | mapdcnv11N |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( `' M ` ( M ` ( N ` { ( u .+ t ) } ) ) ) <-> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) | 
						
							| 101 | 97 100 | mpbid |  |-  ( ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) /\ ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) ) -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) | 
						
							| 102 | 101 | ex |  |-  ( ( ph /\ t e. ( ( N ` { v } ) \ { .0. } ) ) -> ( ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) | 
						
							| 103 | 102 | reximdva |  |-  ( ph -> ( E. t e. ( ( N ` { v } ) \ { .0. } ) ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) = ( N ` { ( u .+ t ) } ) -> E. t e. ( ( N ` { v } ) \ { .0. } ) ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) | 
						
							| 104 | 81 103 | mpd |  |-  ( ph -> E. t e. ( ( N ` { v } ) \ { .0. } ) ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) |