| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmaprnlem1.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hdmaprnlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hdmaprnlem1.v |
|- V = ( Base ` U ) |
| 4 |
|
hdmaprnlem1.n |
|- N = ( LSpan ` U ) |
| 5 |
|
hdmaprnlem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 6 |
|
hdmaprnlem1.l |
|- L = ( LSpan ` C ) |
| 7 |
|
hdmaprnlem1.m |
|- M = ( ( mapd ` K ) ` W ) |
| 8 |
|
hdmaprnlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 9 |
|
hdmaprnlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
hdmaprnlem1.se |
|- ( ph -> s e. ( D \ { Q } ) ) |
| 11 |
|
hdmaprnlem1.ve |
|- ( ph -> v e. V ) |
| 12 |
|
hdmaprnlem1.e |
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
| 13 |
|
hdmaprnlem1.ue |
|- ( ph -> u e. V ) |
| 14 |
|
hdmaprnlem1.un |
|- ( ph -> -. u e. ( N ` { v } ) ) |
| 15 |
|
hdmaprnlem1.d |
|- D = ( Base ` C ) |
| 16 |
|
hdmaprnlem1.q |
|- Q = ( 0g ` C ) |
| 17 |
|
hdmaprnlem1.o |
|- .0. = ( 0g ` U ) |
| 18 |
|
hdmaprnlem1.a |
|- .+b = ( +g ` C ) |
| 19 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 20 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 21 |
3 19 4
|
lspsncl |
|- ( ( U e. LMod /\ u e. V ) -> ( N ` { u } ) e. ( LSubSp ` U ) ) |
| 22 |
20 13 21
|
syl2anc |
|- ( ph -> ( N ` { u } ) e. ( LSubSp ` U ) ) |
| 23 |
1 7 2 19 9 22
|
mapdcnvid1N |
|- ( ph -> ( `' M ` ( M ` ( N ` { u } ) ) ) = ( N ` { u } ) ) |
| 24 |
1 2 3 4 5 6 7 8 9 13
|
hdmap10 |
|- ( ph -> ( M ` ( N ` { u } ) ) = ( L ` { ( S ` u ) } ) ) |
| 25 |
1 5 9
|
lcdlvec |
|- ( ph -> C e. LVec ) |
| 26 |
1 2 3 5 15 8 9 13
|
hdmapcl |
|- ( ph -> ( S ` u ) e. D ) |
| 27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
hdmaprnlem1N |
|- ( ph -> ( L ` { ( S ` u ) } ) =/= ( L ` { s } ) ) |
| 28 |
15 18 16 6 25 26 10 27
|
lspindp3 |
|- ( ph -> ( L ` { ( S ` u ) } ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) ) |
| 29 |
24 28
|
eqnetrd |
|- ( ph -> ( M ` ( N ` { u } ) ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) ) |
| 30 |
1 7 2 19 9 22
|
mapdcl |
|- ( ph -> ( M ` ( N ` { u } ) ) e. ran M ) |
| 31 |
1 5 9
|
lcdlmod |
|- ( ph -> C e. LMod ) |
| 32 |
10
|
eldifad |
|- ( ph -> s e. D ) |
| 33 |
15 18
|
lmodvacl |
|- ( ( C e. LMod /\ ( S ` u ) e. D /\ s e. D ) -> ( ( S ` u ) .+b s ) e. D ) |
| 34 |
31 26 32 33
|
syl3anc |
|- ( ph -> ( ( S ` u ) .+b s ) e. D ) |
| 35 |
|
eqid |
|- ( LSubSp ` C ) = ( LSubSp ` C ) |
| 36 |
15 35 6
|
lspsncl |
|- ( ( C e. LMod /\ ( ( S ` u ) .+b s ) e. D ) -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) |
| 37 |
31 34 36
|
syl2anc |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) |
| 38 |
1 7 5 35 9
|
mapdrn2 |
|- ( ph -> ran M = ( LSubSp ` C ) ) |
| 39 |
37 38
|
eleqtrrd |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ran M ) |
| 40 |
1 7 9 30 39
|
mapdcnv11N |
|- ( ph -> ( ( `' M ` ( M ` ( N ` { u } ) ) ) = ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) <-> ( M ` ( N ` { u } ) ) = ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |
| 41 |
40
|
necon3bid |
|- ( ph -> ( ( `' M ` ( M ` ( N ` { u } ) ) ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) <-> ( M ` ( N ` { u } ) ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |
| 42 |
29 41
|
mpbird |
|- ( ph -> ( `' M ` ( M ` ( N ` { u } ) ) ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |
| 43 |
23 42
|
eqnetrrd |
|- ( ph -> ( N ` { u } ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |