| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmaprnlem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmaprnlem1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmaprnlem1.n |  |-  N = ( LSpan ` U ) | 
						
							| 5 |  | hdmaprnlem1.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | hdmaprnlem1.l |  |-  L = ( LSpan ` C ) | 
						
							| 7 |  | hdmaprnlem1.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 8 |  | hdmaprnlem1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 9 |  | hdmaprnlem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | hdmaprnlem1.se |  |-  ( ph -> s e. ( D \ { Q } ) ) | 
						
							| 11 |  | hdmaprnlem1.ve |  |-  ( ph -> v e. V ) | 
						
							| 12 |  | hdmaprnlem1.e |  |-  ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) | 
						
							| 13 |  | hdmaprnlem1.ue |  |-  ( ph -> u e. V ) | 
						
							| 14 |  | hdmaprnlem1.un |  |-  ( ph -> -. u e. ( N ` { v } ) ) | 
						
							| 15 |  | hdmaprnlem1.d |  |-  D = ( Base ` C ) | 
						
							| 16 |  | hdmaprnlem1.q |  |-  Q = ( 0g ` C ) | 
						
							| 17 |  | hdmaprnlem1.o |  |-  .0. = ( 0g ` U ) | 
						
							| 18 |  | hdmaprnlem1.a |  |-  .+b = ( +g ` C ) | 
						
							| 19 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 20 | 1 2 9 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 21 | 3 19 4 | lspsncl |  |-  ( ( U e. LMod /\ u e. V ) -> ( N ` { u } ) e. ( LSubSp ` U ) ) | 
						
							| 22 | 20 13 21 | syl2anc |  |-  ( ph -> ( N ` { u } ) e. ( LSubSp ` U ) ) | 
						
							| 23 | 1 7 2 19 9 22 | mapdcnvid1N |  |-  ( ph -> ( `' M ` ( M ` ( N ` { u } ) ) ) = ( N ` { u } ) ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 13 | hdmap10 |  |-  ( ph -> ( M ` ( N ` { u } ) ) = ( L ` { ( S ` u ) } ) ) | 
						
							| 25 | 1 5 9 | lcdlvec |  |-  ( ph -> C e. LVec ) | 
						
							| 26 | 1 2 3 5 15 8 9 13 | hdmapcl |  |-  ( ph -> ( S ` u ) e. D ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | hdmaprnlem1N |  |-  ( ph -> ( L ` { ( S ` u ) } ) =/= ( L ` { s } ) ) | 
						
							| 28 | 15 18 16 6 25 26 10 27 | lspindp3 |  |-  ( ph -> ( L ` { ( S ` u ) } ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) ) | 
						
							| 29 | 24 28 | eqnetrd |  |-  ( ph -> ( M ` ( N ` { u } ) ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) ) | 
						
							| 30 | 1 7 2 19 9 22 | mapdcl |  |-  ( ph -> ( M ` ( N ` { u } ) ) e. ran M ) | 
						
							| 31 | 1 5 9 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 32 | 10 | eldifad |  |-  ( ph -> s e. D ) | 
						
							| 33 | 15 18 | lmodvacl |  |-  ( ( C e. LMod /\ ( S ` u ) e. D /\ s e. D ) -> ( ( S ` u ) .+b s ) e. D ) | 
						
							| 34 | 31 26 32 33 | syl3anc |  |-  ( ph -> ( ( S ` u ) .+b s ) e. D ) | 
						
							| 35 |  | eqid |  |-  ( LSubSp ` C ) = ( LSubSp ` C ) | 
						
							| 36 | 15 35 6 | lspsncl |  |-  ( ( C e. LMod /\ ( ( S ` u ) .+b s ) e. D ) -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) | 
						
							| 37 | 31 34 36 | syl2anc |  |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) | 
						
							| 38 | 1 7 5 35 9 | mapdrn2 |  |-  ( ph -> ran M = ( LSubSp ` C ) ) | 
						
							| 39 | 37 38 | eleqtrrd |  |-  ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ran M ) | 
						
							| 40 | 1 7 9 30 39 | mapdcnv11N |  |-  ( ph -> ( ( `' M ` ( M ` ( N ` { u } ) ) ) = ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) <-> ( M ` ( N ` { u } ) ) = ( L ` { ( ( S ` u ) .+b s ) } ) ) ) | 
						
							| 41 | 40 | necon3bid |  |-  ( ph -> ( ( `' M ` ( M ` ( N ` { u } ) ) ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) <-> ( M ` ( N ` { u } ) ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) ) ) | 
						
							| 42 | 29 41 | mpbird |  |-  ( ph -> ( `' M ` ( M ` ( N ` { u } ) ) ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) ) | 
						
							| 43 | 23 42 | eqnetrrd |  |-  ( ph -> ( N ` { u } ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |