Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmaprnlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmaprnlem1.v |
|- V = ( Base ` U ) |
4 |
|
hdmaprnlem1.n |
|- N = ( LSpan ` U ) |
5 |
|
hdmaprnlem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
hdmaprnlem1.l |
|- L = ( LSpan ` C ) |
7 |
|
hdmaprnlem1.m |
|- M = ( ( mapd ` K ) ` W ) |
8 |
|
hdmaprnlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
9 |
|
hdmaprnlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
hdmaprnlem1.se |
|- ( ph -> s e. ( D \ { Q } ) ) |
11 |
|
hdmaprnlem1.ve |
|- ( ph -> v e. V ) |
12 |
|
hdmaprnlem1.e |
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
13 |
|
hdmaprnlem1.ue |
|- ( ph -> u e. V ) |
14 |
|
hdmaprnlem1.un |
|- ( ph -> -. u e. ( N ` { v } ) ) |
15 |
|
hdmaprnlem1.d |
|- D = ( Base ` C ) |
16 |
|
hdmaprnlem1.q |
|- Q = ( 0g ` C ) |
17 |
|
hdmaprnlem1.o |
|- .0. = ( 0g ` U ) |
18 |
|
hdmaprnlem1.a |
|- .+b = ( +g ` C ) |
19 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
20 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
21 |
3 19 4
|
lspsncl |
|- ( ( U e. LMod /\ u e. V ) -> ( N ` { u } ) e. ( LSubSp ` U ) ) |
22 |
20 13 21
|
syl2anc |
|- ( ph -> ( N ` { u } ) e. ( LSubSp ` U ) ) |
23 |
1 7 2 19 9 22
|
mapdcnvid1N |
|- ( ph -> ( `' M ` ( M ` ( N ` { u } ) ) ) = ( N ` { u } ) ) |
24 |
1 2 3 4 5 6 7 8 9 13
|
hdmap10 |
|- ( ph -> ( M ` ( N ` { u } ) ) = ( L ` { ( S ` u ) } ) ) |
25 |
1 5 9
|
lcdlvec |
|- ( ph -> C e. LVec ) |
26 |
1 2 3 5 15 8 9 13
|
hdmapcl |
|- ( ph -> ( S ` u ) e. D ) |
27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
hdmaprnlem1N |
|- ( ph -> ( L ` { ( S ` u ) } ) =/= ( L ` { s } ) ) |
28 |
15 18 16 6 25 26 10 27
|
lspindp3 |
|- ( ph -> ( L ` { ( S ` u ) } ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) ) |
29 |
24 28
|
eqnetrd |
|- ( ph -> ( M ` ( N ` { u } ) ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) ) |
30 |
1 7 2 19 9 22
|
mapdcl |
|- ( ph -> ( M ` ( N ` { u } ) ) e. ran M ) |
31 |
1 5 9
|
lcdlmod |
|- ( ph -> C e. LMod ) |
32 |
10
|
eldifad |
|- ( ph -> s e. D ) |
33 |
15 18
|
lmodvacl |
|- ( ( C e. LMod /\ ( S ` u ) e. D /\ s e. D ) -> ( ( S ` u ) .+b s ) e. D ) |
34 |
31 26 32 33
|
syl3anc |
|- ( ph -> ( ( S ` u ) .+b s ) e. D ) |
35 |
|
eqid |
|- ( LSubSp ` C ) = ( LSubSp ` C ) |
36 |
15 35 6
|
lspsncl |
|- ( ( C e. LMod /\ ( ( S ` u ) .+b s ) e. D ) -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) |
37 |
31 34 36
|
syl2anc |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ( LSubSp ` C ) ) |
38 |
1 7 5 35 9
|
mapdrn2 |
|- ( ph -> ran M = ( LSubSp ` C ) ) |
39 |
37 38
|
eleqtrrd |
|- ( ph -> ( L ` { ( ( S ` u ) .+b s ) } ) e. ran M ) |
40 |
1 7 9 30 39
|
mapdcnv11N |
|- ( ph -> ( ( `' M ` ( M ` ( N ` { u } ) ) ) = ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) <-> ( M ` ( N ` { u } ) ) = ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |
41 |
40
|
necon3bid |
|- ( ph -> ( ( `' M ` ( M ` ( N ` { u } ) ) ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) <-> ( M ` ( N ` { u } ) ) =/= ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |
42 |
29 41
|
mpbird |
|- ( ph -> ( `' M ` ( M ` ( N ` { u } ) ) ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |
43 |
23 42
|
eqnetrrd |
|- ( ph -> ( N ` { u } ) =/= ( `' M ` ( L ` { ( ( S ` u ) .+b s ) } ) ) ) |