Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmaprnlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmaprnlem1.v |
|- V = ( Base ` U ) |
4 |
|
hdmaprnlem1.n |
|- N = ( LSpan ` U ) |
5 |
|
hdmaprnlem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
6 |
|
hdmaprnlem1.l |
|- L = ( LSpan ` C ) |
7 |
|
hdmaprnlem1.m |
|- M = ( ( mapd ` K ) ` W ) |
8 |
|
hdmaprnlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
9 |
|
hdmaprnlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
hdmaprnlem1.se |
|- ( ph -> s e. ( D \ { Q } ) ) |
11 |
|
hdmaprnlem1.ve |
|- ( ph -> v e. V ) |
12 |
|
hdmaprnlem1.e |
|- ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
13 |
|
hdmaprnlem1.ue |
|- ( ph -> u e. V ) |
14 |
|
hdmaprnlem1.un |
|- ( ph -> -. u e. ( N ` { v } ) ) |
15 |
|
hdmaprnlem1.d |
|- D = ( Base ` C ) |
16 |
|
hdmaprnlem1.q |
|- Q = ( 0g ` C ) |
17 |
|
hdmaprnlem1.o |
|- .0. = ( 0g ` U ) |
18 |
|
hdmaprnlem1.a |
|- .+b = ( +g ` C ) |
19 |
|
hdmaprnlem3e.p |
|- .+ = ( +g ` U ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
hdmaprnlem3eN |
|- ( ph -> E. t e. ( ( N ` { v } ) \ { .0. } ) ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) |
21 |
9
|
adantr |
|- ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
22 |
10
|
adantr |
|- ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> s e. ( D \ { Q } ) ) |
23 |
11
|
adantr |
|- ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> v e. V ) |
24 |
12
|
adantr |
|- ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) |
25 |
13
|
adantr |
|- ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> u e. V ) |
26 |
14
|
adantr |
|- ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> -. u e. ( N ` { v } ) ) |
27 |
|
simprl |
|- ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> t e. ( ( N ` { v } ) \ { .0. } ) ) |
28 |
1 2 3 4 5 6 7 8 21 22 23 24 25 26 15 16 17 18 27
|
hdmaprnlem4tN |
|- ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> t e. V ) |
29 |
|
simprr |
|- ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) |
30 |
1 2 3 4 5 6 7 8 21 22 23 24 25 26 15 16 17 18 27 19 29
|
hdmaprnlem9N |
|- ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> s = ( S ` t ) ) |
31 |
30
|
eqcomd |
|- ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> ( S ` t ) = s ) |
32 |
20 28 31
|
reximssdv |
|- ( ph -> E. t e. V ( S ` t ) = s ) |