| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmaprnlem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmaprnlem1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmaprnlem1.n |  |-  N = ( LSpan ` U ) | 
						
							| 5 |  | hdmaprnlem1.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 6 |  | hdmaprnlem1.l |  |-  L = ( LSpan ` C ) | 
						
							| 7 |  | hdmaprnlem1.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 8 |  | hdmaprnlem1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 9 |  | hdmaprnlem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | hdmaprnlem1.se |  |-  ( ph -> s e. ( D \ { Q } ) ) | 
						
							| 11 |  | hdmaprnlem1.ve |  |-  ( ph -> v e. V ) | 
						
							| 12 |  | hdmaprnlem1.e |  |-  ( ph -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) | 
						
							| 13 |  | hdmaprnlem1.ue |  |-  ( ph -> u e. V ) | 
						
							| 14 |  | hdmaprnlem1.un |  |-  ( ph -> -. u e. ( N ` { v } ) ) | 
						
							| 15 |  | hdmaprnlem1.d |  |-  D = ( Base ` C ) | 
						
							| 16 |  | hdmaprnlem1.q |  |-  Q = ( 0g ` C ) | 
						
							| 17 |  | hdmaprnlem1.o |  |-  .0. = ( 0g ` U ) | 
						
							| 18 |  | hdmaprnlem1.a |  |-  .+b = ( +g ` C ) | 
						
							| 19 |  | hdmaprnlem3e.p |  |-  .+ = ( +g ` U ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | hdmaprnlem3eN |  |-  ( ph -> E. t e. ( ( N ` { v } ) \ { .0. } ) ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) | 
						
							| 21 | 9 | adantr |  |-  ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 22 | 10 | adantr |  |-  ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> s e. ( D \ { Q } ) ) | 
						
							| 23 | 11 | adantr |  |-  ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> v e. V ) | 
						
							| 24 | 12 | adantr |  |-  ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> ( M ` ( N ` { v } ) ) = ( L ` { s } ) ) | 
						
							| 25 | 13 | adantr |  |-  ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> u e. V ) | 
						
							| 26 | 14 | adantr |  |-  ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> -. u e. ( N ` { v } ) ) | 
						
							| 27 |  | simprl |  |-  ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> t e. ( ( N ` { v } ) \ { .0. } ) ) | 
						
							| 28 | 1 2 3 4 5 6 7 8 21 22 23 24 25 26 15 16 17 18 27 | hdmaprnlem4tN |  |-  ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> t e. V ) | 
						
							| 29 |  | simprr |  |-  ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) | 
						
							| 30 | 1 2 3 4 5 6 7 8 21 22 23 24 25 26 15 16 17 18 27 19 29 | hdmaprnlem9N |  |-  ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> s = ( S ` t ) ) | 
						
							| 31 | 30 | eqcomd |  |-  ( ( ph /\ ( t e. ( ( N ` { v } ) \ { .0. } ) /\ ( L ` { ( ( S ` u ) .+b s ) } ) = ( M ` ( N ` { ( u .+ t ) } ) ) ) ) -> ( S ` t ) = s ) | 
						
							| 32 | 20 28 31 | reximssdv |  |-  ( ph -> E. t e. V ( S ` t ) = s ) |