| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaprnlem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmaprnlem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmaprnlem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmaprnlem1.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 5 |  | hdmaprnlem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hdmaprnlem1.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 7 |  | hdmaprnlem1.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmaprnlem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmaprnlem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | hdmaprnlem1.se | ⊢ ( 𝜑  →  𝑠  ∈  ( 𝐷  ∖  { 𝑄 } ) ) | 
						
							| 11 |  | hdmaprnlem1.ve | ⊢ ( 𝜑  →  𝑣  ∈  𝑉 ) | 
						
							| 12 |  | hdmaprnlem1.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 13 |  | hdmaprnlem1.ue | ⊢ ( 𝜑  →  𝑢  ∈  𝑉 ) | 
						
							| 14 |  | hdmaprnlem1.un | ⊢ ( 𝜑  →  ¬  𝑢  ∈  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 15 |  | hdmaprnlem1.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 16 |  | hdmaprnlem1.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 17 |  | hdmaprnlem1.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 18 |  | hdmaprnlem1.a | ⊢  ✚   =  ( +g ‘ 𝐶 ) | 
						
							| 19 |  | hdmaprnlem3e.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | hdmaprnlem3eN | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) | 
						
							| 21 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } )  ∧  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 22 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } )  ∧  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) )  →  𝑠  ∈  ( 𝐷  ∖  { 𝑄 } ) ) | 
						
							| 23 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } )  ∧  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) )  →  𝑣  ∈  𝑉 ) | 
						
							| 24 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } )  ∧  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) )  =  ( 𝐿 ‘ { 𝑠 } ) ) | 
						
							| 25 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } )  ∧  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) )  →  𝑢  ∈  𝑉 ) | 
						
							| 26 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } )  ∧  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) )  →  ¬  𝑢  ∈  ( 𝑁 ‘ { 𝑣 } ) ) | 
						
							| 27 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } )  ∧  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) )  →  𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } ) ) | 
						
							| 28 | 1 2 3 4 5 6 7 8 21 22 23 24 25 26 15 16 17 18 27 | hdmaprnlem4tN | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } )  ∧  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) )  →  𝑡  ∈  𝑉 ) | 
						
							| 29 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } )  ∧  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) )  →  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) | 
						
							| 30 | 1 2 3 4 5 6 7 8 21 22 23 24 25 26 15 16 17 18 27 19 29 | hdmaprnlem9N | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } )  ∧  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) )  →  𝑠  =  ( 𝑆 ‘ 𝑡 ) ) | 
						
							| 31 | 30 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  ( ( 𝑁 ‘ { 𝑣 } )  ∖  {  0  } )  ∧  ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 )  ✚  𝑠 ) } )  =  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢  +  𝑡 ) } ) ) ) )  →  ( 𝑆 ‘ 𝑡 )  =  𝑠 ) | 
						
							| 32 | 20 28 31 | reximssdv | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  𝑉 ( 𝑆 ‘ 𝑡 )  =  𝑠 ) |