Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaprnlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmaprnlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmaprnlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmaprnlem1.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
5 |
|
hdmaprnlem1.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hdmaprnlem1.l |
⊢ 𝐿 = ( LSpan ‘ 𝐶 ) |
7 |
|
hdmaprnlem1.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmaprnlem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmaprnlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
hdmaprnlem1.se |
⊢ ( 𝜑 → 𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
11 |
|
hdmaprnlem1.ve |
⊢ ( 𝜑 → 𝑣 ∈ 𝑉 ) |
12 |
|
hdmaprnlem1.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
13 |
|
hdmaprnlem1.ue |
⊢ ( 𝜑 → 𝑢 ∈ 𝑉 ) |
14 |
|
hdmaprnlem1.un |
⊢ ( 𝜑 → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
15 |
|
hdmaprnlem1.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
16 |
|
hdmaprnlem1.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
17 |
|
hdmaprnlem1.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
18 |
|
hdmaprnlem1.a |
⊢ ✚ = ( +g ‘ 𝐶 ) |
19 |
|
hdmaprnlem3e.p |
⊢ + = ( +g ‘ 𝑈 ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
hdmaprnlem3eN |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) |
21 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ∧ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
22 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ∧ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) → 𝑠 ∈ ( 𝐷 ∖ { 𝑄 } ) ) |
23 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ∧ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) → 𝑣 ∈ 𝑉 ) |
24 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ∧ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑣 } ) ) = ( 𝐿 ‘ { 𝑠 } ) ) |
25 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ∧ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) → 𝑢 ∈ 𝑉 ) |
26 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ∧ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) → ¬ 𝑢 ∈ ( 𝑁 ‘ { 𝑣 } ) ) |
27 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ∧ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) → 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ) |
28 |
1 2 3 4 5 6 7 8 21 22 23 24 25 26 15 16 17 18 27
|
hdmaprnlem4tN |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ∧ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) → 𝑡 ∈ 𝑉 ) |
29 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ∧ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) → ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) |
30 |
1 2 3 4 5 6 7 8 21 22 23 24 25 26 15 16 17 18 27 19 29
|
hdmaprnlem9N |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ∧ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) → 𝑠 = ( 𝑆 ‘ 𝑡 ) ) |
31 |
30
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( 𝑁 ‘ { 𝑣 } ) ∖ { 0 } ) ∧ ( 𝐿 ‘ { ( ( 𝑆 ‘ 𝑢 ) ✚ 𝑠 ) } ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑢 + 𝑡 ) } ) ) ) ) → ( 𝑆 ‘ 𝑡 ) = 𝑠 ) |
32 |
20 28 31
|
reximssdv |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝑉 ( 𝑆 ‘ 𝑡 ) = 𝑠 ) |