Step |
Hyp |
Ref |
Expression |
1 |
|
mapdrn.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdrn.o |
|- O = ( ( ocH ` K ) ` W ) |
3 |
|
mapdrn.m |
|- M = ( ( mapd ` K ) ` W ) |
4 |
|
mapdrn.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
mapdrn.f |
|- F = ( LFnl ` U ) |
6 |
|
mapdrn.l |
|- L = ( LKer ` U ) |
7 |
|
mapdrn.d |
|- D = ( LDual ` U ) |
8 |
|
mapdrn.t |
|- T = ( LSubSp ` D ) |
9 |
|
mapdrn.c |
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
10 |
|
mapdrn.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
11 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
12 |
1 2 3 4 11 5 6 7 8 9 10
|
mapd1o |
|- ( ph -> M : ( LSubSp ` U ) -1-1-onto-> ( T i^i ~P C ) ) |
13 |
|
f1ofo |
|- ( M : ( LSubSp ` U ) -1-1-onto-> ( T i^i ~P C ) -> M : ( LSubSp ` U ) -onto-> ( T i^i ~P C ) ) |
14 |
|
forn |
|- ( M : ( LSubSp ` U ) -onto-> ( T i^i ~P C ) -> ran M = ( T i^i ~P C ) ) |
15 |
12 13 14
|
3syl |
|- ( ph -> ran M = ( T i^i ~P C ) ) |