| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdrn.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdrn.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | mapdrn.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 4 |  | mapdrn.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | mapdrn.f |  |-  F = ( LFnl ` U ) | 
						
							| 6 |  | mapdrn.l |  |-  L = ( LKer ` U ) | 
						
							| 7 |  | mapdrn.d |  |-  D = ( LDual ` U ) | 
						
							| 8 |  | mapdrn.t |  |-  T = ( LSubSp ` D ) | 
						
							| 9 |  | mapdrn.c |  |-  C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } | 
						
							| 10 |  | mapdrn.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 11 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 12 | 1 2 3 4 11 5 6 7 8 9 10 | mapd1o |  |-  ( ph -> M : ( LSubSp ` U ) -1-1-onto-> ( T i^i ~P C ) ) | 
						
							| 13 |  | f1ofo |  |-  ( M : ( LSubSp ` U ) -1-1-onto-> ( T i^i ~P C ) -> M : ( LSubSp ` U ) -onto-> ( T i^i ~P C ) ) | 
						
							| 14 |  | forn |  |-  ( M : ( LSubSp ` U ) -onto-> ( T i^i ~P C ) -> ran M = ( T i^i ~P C ) ) | 
						
							| 15 | 12 13 14 | 3syl |  |-  ( ph -> ran M = ( T i^i ~P C ) ) |