Metamath Proof Explorer


Theorem mapdrn

Description: Range of the map defined by df-mapd . (Contributed by NM, 12-Mar-2015)

Ref Expression
Hypotheses mapdrn.h
|- H = ( LHyp ` K )
mapdrn.o
|- O = ( ( ocH ` K ) ` W )
mapdrn.m
|- M = ( ( mapd ` K ) ` W )
mapdrn.u
|- U = ( ( DVecH ` K ) ` W )
mapdrn.f
|- F = ( LFnl ` U )
mapdrn.l
|- L = ( LKer ` U )
mapdrn.d
|- D = ( LDual ` U )
mapdrn.t
|- T = ( LSubSp ` D )
mapdrn.c
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) }
mapdrn.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion mapdrn
|- ( ph -> ran M = ( T i^i ~P C ) )

Proof

Step Hyp Ref Expression
1 mapdrn.h
 |-  H = ( LHyp ` K )
2 mapdrn.o
 |-  O = ( ( ocH ` K ) ` W )
3 mapdrn.m
 |-  M = ( ( mapd ` K ) ` W )
4 mapdrn.u
 |-  U = ( ( DVecH ` K ) ` W )
5 mapdrn.f
 |-  F = ( LFnl ` U )
6 mapdrn.l
 |-  L = ( LKer ` U )
7 mapdrn.d
 |-  D = ( LDual ` U )
8 mapdrn.t
 |-  T = ( LSubSp ` D )
9 mapdrn.c
 |-  C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) }
10 mapdrn.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
11 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
12 1 2 3 4 11 5 6 7 8 9 10 mapd1o
 |-  ( ph -> M : ( LSubSp ` U ) -1-1-onto-> ( T i^i ~P C ) )
13 f1ofo
 |-  ( M : ( LSubSp ` U ) -1-1-onto-> ( T i^i ~P C ) -> M : ( LSubSp ` U ) -onto-> ( T i^i ~P C ) )
14 forn
 |-  ( M : ( LSubSp ` U ) -onto-> ( T i^i ~P C ) -> ran M = ( T i^i ~P C ) )
15 12 13 14 3syl
 |-  ( ph -> ran M = ( T i^i ~P C ) )