| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdrn.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdrn.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdrn.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdrn.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | mapdrn.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 6 |  | mapdrn.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 7 |  | mapdrn.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 8 |  | mapdrn.t | ⊢ 𝑇  =  ( LSubSp ‘ 𝐷 ) | 
						
							| 9 |  | mapdrn.c | ⊢ 𝐶  =  { 𝑔  ∈  𝐹  ∣  ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 ) } | 
						
							| 10 |  | mapdrn.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 11 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 12 | 1 2 3 4 11 5 6 7 8 9 10 | mapd1o | ⊢ ( 𝜑  →  𝑀 : ( LSubSp ‘ 𝑈 ) –1-1-onto→ ( 𝑇  ∩  𝒫  𝐶 ) ) | 
						
							| 13 |  | f1ofo | ⊢ ( 𝑀 : ( LSubSp ‘ 𝑈 ) –1-1-onto→ ( 𝑇  ∩  𝒫  𝐶 )  →  𝑀 : ( LSubSp ‘ 𝑈 ) –onto→ ( 𝑇  ∩  𝒫  𝐶 ) ) | 
						
							| 14 |  | forn | ⊢ ( 𝑀 : ( LSubSp ‘ 𝑈 ) –onto→ ( 𝑇  ∩  𝒫  𝐶 )  →  ran  𝑀  =  ( 𝑇  ∩  𝒫  𝐶 ) ) | 
						
							| 15 | 12 13 14 | 3syl | ⊢ ( 𝜑  →  ran  𝑀  =  ( 𝑇  ∩  𝒫  𝐶 ) ) |