| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdrn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapdrn.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapdrn.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
mapdrn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
mapdrn.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 6 |
|
mapdrn.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 7 |
|
mapdunirn.c |
⊢ 𝐶 = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } |
| 8 |
|
mapdunirn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
eqid |
⊢ ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 ) |
| 10 |
|
eqid |
⊢ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) = ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) |
| 11 |
1 2 3 4 5 6 9 10 7 8
|
mapdrn |
⊢ ( 𝜑 → ran 𝑀 = ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ) |
| 12 |
11
|
unieqd |
⊢ ( 𝜑 → ∪ ran 𝑀 = ∪ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ) |
| 13 |
|
uniin |
⊢ ∪ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ⊆ ( ∪ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ ∪ 𝒫 𝐶 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ ( LDual ‘ 𝑈 ) ) = ( Base ‘ ( LDual ‘ 𝑈 ) ) |
| 15 |
1 4 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 16 |
9 15
|
lduallmod |
⊢ ( 𝜑 → ( LDual ‘ 𝑈 ) ∈ LMod ) |
| 17 |
14 10 16
|
lssuni |
⊢ ( 𝜑 → ∪ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) = ( Base ‘ ( LDual ‘ 𝑈 ) ) ) |
| 18 |
5 9 14 15
|
ldualvbase |
⊢ ( 𝜑 → ( Base ‘ ( LDual ‘ 𝑈 ) ) = 𝐹 ) |
| 19 |
17 18
|
eqtrd |
⊢ ( 𝜑 → ∪ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) = 𝐹 ) |
| 20 |
|
unipw |
⊢ ∪ 𝒫 𝐶 = 𝐶 |
| 21 |
20
|
a1i |
⊢ ( 𝜑 → ∪ 𝒫 𝐶 = 𝐶 ) |
| 22 |
19 21
|
ineq12d |
⊢ ( 𝜑 → ( ∪ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ ∪ 𝒫 𝐶 ) = ( 𝐹 ∩ 𝐶 ) ) |
| 23 |
|
ssrab2 |
⊢ { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } ⊆ 𝐹 |
| 24 |
7 23
|
eqsstri |
⊢ 𝐶 ⊆ 𝐹 |
| 25 |
|
sseqin2 |
⊢ ( 𝐶 ⊆ 𝐹 ↔ ( 𝐹 ∩ 𝐶 ) = 𝐶 ) |
| 26 |
24 25
|
mpbi |
⊢ ( 𝐹 ∩ 𝐶 ) = 𝐶 |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → ( 𝐹 ∩ 𝐶 ) = 𝐶 ) |
| 28 |
22 27
|
eqtrd |
⊢ ( 𝜑 → ( ∪ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ ∪ 𝒫 𝐶 ) = 𝐶 ) |
| 29 |
13 28
|
sseqtrid |
⊢ ( 𝜑 → ∪ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ⊆ 𝐶 ) |
| 30 |
1 4 2 5 6 9 10 7 8
|
lclkr |
⊢ ( 𝜑 → 𝐶 ∈ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ) |
| 31 |
5
|
fvexi |
⊢ 𝐹 ∈ V |
| 32 |
7 31
|
rabex2 |
⊢ 𝐶 ∈ V |
| 33 |
32
|
pwid |
⊢ 𝐶 ∈ 𝒫 𝐶 |
| 34 |
33
|
a1i |
⊢ ( 𝜑 → 𝐶 ∈ 𝒫 𝐶 ) |
| 35 |
30 34
|
elind |
⊢ ( 𝜑 → 𝐶 ∈ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ) |
| 36 |
|
elssuni |
⊢ ( 𝐶 ∈ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) → 𝐶 ⊆ ∪ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ) |
| 37 |
35 36
|
syl |
⊢ ( 𝜑 → 𝐶 ⊆ ∪ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ) |
| 38 |
29 37
|
eqssd |
⊢ ( 𝜑 → ∪ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) = 𝐶 ) |
| 39 |
12 38
|
eqtrd |
⊢ ( 𝜑 → ∪ ran 𝑀 = 𝐶 ) |