Metamath Proof Explorer


Theorem mapdunirnN

Description: Union of the range of the map defined by df-mapd . (Contributed by NM, 13-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdrn.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdrn.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
mapdrn.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdrn.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdrn.f 𝐹 = ( LFnl ‘ 𝑈 )
mapdrn.l 𝐿 = ( LKer ‘ 𝑈 )
mapdunirn.c 𝐶 = { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) }
mapdunirn.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion mapdunirnN ( 𝜑 ran 𝑀 = 𝐶 )

Proof

Step Hyp Ref Expression
1 mapdrn.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdrn.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdrn.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
4 mapdrn.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 mapdrn.f 𝐹 = ( LFnl ‘ 𝑈 )
6 mapdrn.l 𝐿 = ( LKer ‘ 𝑈 )
7 mapdunirn.c 𝐶 = { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) }
8 mapdunirn.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 eqid ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 )
10 eqid ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) = ( LSubSp ‘ ( LDual ‘ 𝑈 ) )
11 1 2 3 4 5 6 9 10 7 8 mapdrn ( 𝜑 → ran 𝑀 = ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) )
12 11 unieqd ( 𝜑 ran 𝑀 = ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) )
13 uniin ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ⊆ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 )
14 eqid ( Base ‘ ( LDual ‘ 𝑈 ) ) = ( Base ‘ ( LDual ‘ 𝑈 ) )
15 1 4 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
16 9 15 lduallmod ( 𝜑 → ( LDual ‘ 𝑈 ) ∈ LMod )
17 14 10 16 lssuni ( 𝜑 ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) = ( Base ‘ ( LDual ‘ 𝑈 ) ) )
18 5 9 14 15 ldualvbase ( 𝜑 → ( Base ‘ ( LDual ‘ 𝑈 ) ) = 𝐹 )
19 17 18 eqtrd ( 𝜑 ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) = 𝐹 )
20 unipw 𝒫 𝐶 = 𝐶
21 20 a1i ( 𝜑 𝒫 𝐶 = 𝐶 )
22 19 21 ineq12d ( 𝜑 → ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) = ( 𝐹𝐶 ) )
23 ssrab2 { 𝑔𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿𝑔 ) ) ) = ( 𝐿𝑔 ) } ⊆ 𝐹
24 7 23 eqsstri 𝐶𝐹
25 sseqin2 ( 𝐶𝐹 ↔ ( 𝐹𝐶 ) = 𝐶 )
26 24 25 mpbi ( 𝐹𝐶 ) = 𝐶
27 26 a1i ( 𝜑 → ( 𝐹𝐶 ) = 𝐶 )
28 22 27 eqtrd ( 𝜑 → ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) = 𝐶 )
29 13 28 sseqtrid ( 𝜑 ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ⊆ 𝐶 )
30 1 4 2 5 6 9 10 7 8 lclkr ( 𝜑𝐶 ∈ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) )
31 5 fvexi 𝐹 ∈ V
32 7 31 rabex2 𝐶 ∈ V
33 32 pwid 𝐶 ∈ 𝒫 𝐶
34 33 a1i ( 𝜑𝐶 ∈ 𝒫 𝐶 )
35 30 34 elind ( 𝜑𝐶 ∈ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) )
36 elssuni ( 𝐶 ∈ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) → 𝐶 ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) )
37 35 36 syl ( 𝜑𝐶 ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) )
38 29 37 eqssd ( 𝜑 ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) = 𝐶 )
39 12 38 eqtrd ( 𝜑 ran 𝑀 = 𝐶 )