| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdrn.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdrn.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdrn.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdrn.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | mapdrn.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 6 |  | mapdrn.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 7 |  | mapdunirn.c | ⊢ 𝐶  =  { 𝑔  ∈  𝐹  ∣  ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 ) } | 
						
							| 8 |  | mapdunirn.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | eqid | ⊢ ( LDual ‘ 𝑈 )  =  ( LDual ‘ 𝑈 ) | 
						
							| 10 |  | eqid | ⊢ ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  =  ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) | 
						
							| 11 | 1 2 3 4 5 6 9 10 7 8 | mapdrn | ⊢ ( 𝜑  →  ran  𝑀  =  ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  ∩  𝒫  𝐶 ) ) | 
						
							| 12 | 11 | unieqd | ⊢ ( 𝜑  →  ∪  ran  𝑀  =  ∪  ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  ∩  𝒫  𝐶 ) ) | 
						
							| 13 |  | uniin | ⊢ ∪  ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  ∩  𝒫  𝐶 )  ⊆  ( ∪  ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  ∩  ∪  𝒫  𝐶 ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ ( LDual ‘ 𝑈 ) )  =  ( Base ‘ ( LDual ‘ 𝑈 ) ) | 
						
							| 15 | 1 4 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 16 | 9 15 | lduallmod | ⊢ ( 𝜑  →  ( LDual ‘ 𝑈 )  ∈  LMod ) | 
						
							| 17 | 14 10 16 | lssuni | ⊢ ( 𝜑  →  ∪  ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  =  ( Base ‘ ( LDual ‘ 𝑈 ) ) ) | 
						
							| 18 | 5 9 14 15 | ldualvbase | ⊢ ( 𝜑  →  ( Base ‘ ( LDual ‘ 𝑈 ) )  =  𝐹 ) | 
						
							| 19 | 17 18 | eqtrd | ⊢ ( 𝜑  →  ∪  ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  =  𝐹 ) | 
						
							| 20 |  | unipw | ⊢ ∪  𝒫  𝐶  =  𝐶 | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  ∪  𝒫  𝐶  =  𝐶 ) | 
						
							| 22 | 19 21 | ineq12d | ⊢ ( 𝜑  →  ( ∪  ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  ∩  ∪  𝒫  𝐶 )  =  ( 𝐹  ∩  𝐶 ) ) | 
						
							| 23 |  | ssrab2 | ⊢ { 𝑔  ∈  𝐹  ∣  ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 ) }  ⊆  𝐹 | 
						
							| 24 | 7 23 | eqsstri | ⊢ 𝐶  ⊆  𝐹 | 
						
							| 25 |  | sseqin2 | ⊢ ( 𝐶  ⊆  𝐹  ↔  ( 𝐹  ∩  𝐶 )  =  𝐶 ) | 
						
							| 26 | 24 25 | mpbi | ⊢ ( 𝐹  ∩  𝐶 )  =  𝐶 | 
						
							| 27 | 26 | a1i | ⊢ ( 𝜑  →  ( 𝐹  ∩  𝐶 )  =  𝐶 ) | 
						
							| 28 | 22 27 | eqtrd | ⊢ ( 𝜑  →  ( ∪  ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  ∩  ∪  𝒫  𝐶 )  =  𝐶 ) | 
						
							| 29 | 13 28 | sseqtrid | ⊢ ( 𝜑  →  ∪  ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  ∩  𝒫  𝐶 )  ⊆  𝐶 ) | 
						
							| 30 | 1 4 2 5 6 9 10 7 8 | lclkr | ⊢ ( 𝜑  →  𝐶  ∈  ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ) | 
						
							| 31 | 5 | fvexi | ⊢ 𝐹  ∈  V | 
						
							| 32 | 7 31 | rabex2 | ⊢ 𝐶  ∈  V | 
						
							| 33 | 32 | pwid | ⊢ 𝐶  ∈  𝒫  𝐶 | 
						
							| 34 | 33 | a1i | ⊢ ( 𝜑  →  𝐶  ∈  𝒫  𝐶 ) | 
						
							| 35 | 30 34 | elind | ⊢ ( 𝜑  →  𝐶  ∈  ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  ∩  𝒫  𝐶 ) ) | 
						
							| 36 |  | elssuni | ⊢ ( 𝐶  ∈  ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  ∩  𝒫  𝐶 )  →  𝐶  ⊆  ∪  ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  ∩  𝒫  𝐶 ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝜑  →  𝐶  ⊆  ∪  ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  ∩  𝒫  𝐶 ) ) | 
						
							| 38 | 29 37 | eqssd | ⊢ ( 𝜑  →  ∪  ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) )  ∩  𝒫  𝐶 )  =  𝐶 ) | 
						
							| 39 | 12 38 | eqtrd | ⊢ ( 𝜑  →  ∪  ran  𝑀  =  𝐶 ) |