Step |
Hyp |
Ref |
Expression |
1 |
|
mapdrn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdrn.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdrn.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdrn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
mapdrn.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
mapdrn.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
7 |
|
mapdunirn.c |
⊢ 𝐶 = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } |
8 |
|
mapdunirn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
eqid |
⊢ ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 ) |
10 |
|
eqid |
⊢ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) = ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) |
11 |
1 2 3 4 5 6 9 10 7 8
|
mapdrn |
⊢ ( 𝜑 → ran 𝑀 = ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ) |
12 |
11
|
unieqd |
⊢ ( 𝜑 → ∪ ran 𝑀 = ∪ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ) |
13 |
|
uniin |
⊢ ∪ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ⊆ ( ∪ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ ∪ 𝒫 𝐶 ) |
14 |
|
eqid |
⊢ ( Base ‘ ( LDual ‘ 𝑈 ) ) = ( Base ‘ ( LDual ‘ 𝑈 ) ) |
15 |
1 4 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
16 |
9 15
|
lduallmod |
⊢ ( 𝜑 → ( LDual ‘ 𝑈 ) ∈ LMod ) |
17 |
14 10 16
|
lssuni |
⊢ ( 𝜑 → ∪ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) = ( Base ‘ ( LDual ‘ 𝑈 ) ) ) |
18 |
5 9 14 15
|
ldualvbase |
⊢ ( 𝜑 → ( Base ‘ ( LDual ‘ 𝑈 ) ) = 𝐹 ) |
19 |
17 18
|
eqtrd |
⊢ ( 𝜑 → ∪ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) = 𝐹 ) |
20 |
|
unipw |
⊢ ∪ 𝒫 𝐶 = 𝐶 |
21 |
20
|
a1i |
⊢ ( 𝜑 → ∪ 𝒫 𝐶 = 𝐶 ) |
22 |
19 21
|
ineq12d |
⊢ ( 𝜑 → ( ∪ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ ∪ 𝒫 𝐶 ) = ( 𝐹 ∩ 𝐶 ) ) |
23 |
|
ssrab2 |
⊢ { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } ⊆ 𝐹 |
24 |
7 23
|
eqsstri |
⊢ 𝐶 ⊆ 𝐹 |
25 |
|
sseqin2 |
⊢ ( 𝐶 ⊆ 𝐹 ↔ ( 𝐹 ∩ 𝐶 ) = 𝐶 ) |
26 |
24 25
|
mpbi |
⊢ ( 𝐹 ∩ 𝐶 ) = 𝐶 |
27 |
26
|
a1i |
⊢ ( 𝜑 → ( 𝐹 ∩ 𝐶 ) = 𝐶 ) |
28 |
22 27
|
eqtrd |
⊢ ( 𝜑 → ( ∪ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ ∪ 𝒫 𝐶 ) = 𝐶 ) |
29 |
13 28
|
sseqtrid |
⊢ ( 𝜑 → ∪ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ⊆ 𝐶 ) |
30 |
1 4 2 5 6 9 10 7 8
|
lclkr |
⊢ ( 𝜑 → 𝐶 ∈ ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ) |
31 |
5
|
fvexi |
⊢ 𝐹 ∈ V |
32 |
7 31
|
rabex2 |
⊢ 𝐶 ∈ V |
33 |
32
|
pwid |
⊢ 𝐶 ∈ 𝒫 𝐶 |
34 |
33
|
a1i |
⊢ ( 𝜑 → 𝐶 ∈ 𝒫 𝐶 ) |
35 |
30 34
|
elind |
⊢ ( 𝜑 → 𝐶 ∈ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ) |
36 |
|
elssuni |
⊢ ( 𝐶 ∈ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) → 𝐶 ⊆ ∪ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ) |
37 |
35 36
|
syl |
⊢ ( 𝜑 → 𝐶 ⊆ ∪ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) ) |
38 |
29 37
|
eqssd |
⊢ ( 𝜑 → ∪ ( ( LSubSp ‘ ( LDual ‘ 𝑈 ) ) ∩ 𝒫 𝐶 ) = 𝐶 ) |
39 |
12 38
|
eqtrd |
⊢ ( 𝜑 → ∪ ran 𝑀 = 𝐶 ) |