| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdrn.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdrn.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | mapdrn.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 4 |  | mapdrn.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | mapdrn.f |  |-  F = ( LFnl ` U ) | 
						
							| 6 |  | mapdrn.l |  |-  L = ( LKer ` U ) | 
						
							| 7 |  | mapdunirn.c |  |-  C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } | 
						
							| 8 |  | mapdunirn.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | eqid |  |-  ( LDual ` U ) = ( LDual ` U ) | 
						
							| 10 |  | eqid |  |-  ( LSubSp ` ( LDual ` U ) ) = ( LSubSp ` ( LDual ` U ) ) | 
						
							| 11 | 1 2 3 4 5 6 9 10 7 8 | mapdrn |  |-  ( ph -> ran M = ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) ) | 
						
							| 12 | 11 | unieqd |  |-  ( ph -> U. ran M = U. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) ) | 
						
							| 13 |  | uniin |  |-  U. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) C_ ( U. ( LSubSp ` ( LDual ` U ) ) i^i U. ~P C ) | 
						
							| 14 |  | eqid |  |-  ( Base ` ( LDual ` U ) ) = ( Base ` ( LDual ` U ) ) | 
						
							| 15 | 1 4 8 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 16 | 9 15 | lduallmod |  |-  ( ph -> ( LDual ` U ) e. LMod ) | 
						
							| 17 | 14 10 16 | lssuni |  |-  ( ph -> U. ( LSubSp ` ( LDual ` U ) ) = ( Base ` ( LDual ` U ) ) ) | 
						
							| 18 | 5 9 14 15 | ldualvbase |  |-  ( ph -> ( Base ` ( LDual ` U ) ) = F ) | 
						
							| 19 | 17 18 | eqtrd |  |-  ( ph -> U. ( LSubSp ` ( LDual ` U ) ) = F ) | 
						
							| 20 |  | unipw |  |-  U. ~P C = C | 
						
							| 21 | 20 | a1i |  |-  ( ph -> U. ~P C = C ) | 
						
							| 22 | 19 21 | ineq12d |  |-  ( ph -> ( U. ( LSubSp ` ( LDual ` U ) ) i^i U. ~P C ) = ( F i^i C ) ) | 
						
							| 23 |  | ssrab2 |  |-  { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } C_ F | 
						
							| 24 | 7 23 | eqsstri |  |-  C C_ F | 
						
							| 25 |  | sseqin2 |  |-  ( C C_ F <-> ( F i^i C ) = C ) | 
						
							| 26 | 24 25 | mpbi |  |-  ( F i^i C ) = C | 
						
							| 27 | 26 | a1i |  |-  ( ph -> ( F i^i C ) = C ) | 
						
							| 28 | 22 27 | eqtrd |  |-  ( ph -> ( U. ( LSubSp ` ( LDual ` U ) ) i^i U. ~P C ) = C ) | 
						
							| 29 | 13 28 | sseqtrid |  |-  ( ph -> U. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) C_ C ) | 
						
							| 30 | 1 4 2 5 6 9 10 7 8 | lclkr |  |-  ( ph -> C e. ( LSubSp ` ( LDual ` U ) ) ) | 
						
							| 31 | 5 | fvexi |  |-  F e. _V | 
						
							| 32 | 7 31 | rabex2 |  |-  C e. _V | 
						
							| 33 | 32 | pwid |  |-  C e. ~P C | 
						
							| 34 | 33 | a1i |  |-  ( ph -> C e. ~P C ) | 
						
							| 35 | 30 34 | elind |  |-  ( ph -> C e. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) ) | 
						
							| 36 |  | elssuni |  |-  ( C e. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) -> C C_ U. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ph -> C C_ U. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) ) | 
						
							| 38 | 29 37 | eqssd |  |-  ( ph -> U. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) = C ) | 
						
							| 39 | 12 38 | eqtrd |  |-  ( ph -> U. ran M = C ) |