Step |
Hyp |
Ref |
Expression |
1 |
|
mapdrn.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdrn.o |
|- O = ( ( ocH ` K ) ` W ) |
3 |
|
mapdrn.m |
|- M = ( ( mapd ` K ) ` W ) |
4 |
|
mapdrn.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
mapdrn.f |
|- F = ( LFnl ` U ) |
6 |
|
mapdrn.l |
|- L = ( LKer ` U ) |
7 |
|
mapdunirn.c |
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
8 |
|
mapdunirn.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
eqid |
|- ( LDual ` U ) = ( LDual ` U ) |
10 |
|
eqid |
|- ( LSubSp ` ( LDual ` U ) ) = ( LSubSp ` ( LDual ` U ) ) |
11 |
1 2 3 4 5 6 9 10 7 8
|
mapdrn |
|- ( ph -> ran M = ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) ) |
12 |
11
|
unieqd |
|- ( ph -> U. ran M = U. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) ) |
13 |
|
uniin |
|- U. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) C_ ( U. ( LSubSp ` ( LDual ` U ) ) i^i U. ~P C ) |
14 |
|
eqid |
|- ( Base ` ( LDual ` U ) ) = ( Base ` ( LDual ` U ) ) |
15 |
1 4 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
16 |
9 15
|
lduallmod |
|- ( ph -> ( LDual ` U ) e. LMod ) |
17 |
14 10 16
|
lssuni |
|- ( ph -> U. ( LSubSp ` ( LDual ` U ) ) = ( Base ` ( LDual ` U ) ) ) |
18 |
5 9 14 15
|
ldualvbase |
|- ( ph -> ( Base ` ( LDual ` U ) ) = F ) |
19 |
17 18
|
eqtrd |
|- ( ph -> U. ( LSubSp ` ( LDual ` U ) ) = F ) |
20 |
|
unipw |
|- U. ~P C = C |
21 |
20
|
a1i |
|- ( ph -> U. ~P C = C ) |
22 |
19 21
|
ineq12d |
|- ( ph -> ( U. ( LSubSp ` ( LDual ` U ) ) i^i U. ~P C ) = ( F i^i C ) ) |
23 |
|
ssrab2 |
|- { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } C_ F |
24 |
7 23
|
eqsstri |
|- C C_ F |
25 |
|
sseqin2 |
|- ( C C_ F <-> ( F i^i C ) = C ) |
26 |
24 25
|
mpbi |
|- ( F i^i C ) = C |
27 |
26
|
a1i |
|- ( ph -> ( F i^i C ) = C ) |
28 |
22 27
|
eqtrd |
|- ( ph -> ( U. ( LSubSp ` ( LDual ` U ) ) i^i U. ~P C ) = C ) |
29 |
13 28
|
sseqtrid |
|- ( ph -> U. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) C_ C ) |
30 |
1 4 2 5 6 9 10 7 8
|
lclkr |
|- ( ph -> C e. ( LSubSp ` ( LDual ` U ) ) ) |
31 |
5
|
fvexi |
|- F e. _V |
32 |
7 31
|
rabex2 |
|- C e. _V |
33 |
32
|
pwid |
|- C e. ~P C |
34 |
33
|
a1i |
|- ( ph -> C e. ~P C ) |
35 |
30 34
|
elind |
|- ( ph -> C e. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) ) |
36 |
|
elssuni |
|- ( C e. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) -> C C_ U. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) ) |
37 |
35 36
|
syl |
|- ( ph -> C C_ U. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) ) |
38 |
29 37
|
eqssd |
|- ( ph -> U. ( ( LSubSp ` ( LDual ` U ) ) i^i ~P C ) = C ) |
39 |
12 38
|
eqtrd |
|- ( ph -> U. ran M = C ) |