| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdsn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapdsn.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapdsn.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
mapdsn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
mapdsn.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 6 |
|
mapdsn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 7 |
|
mapdsn.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 8 |
|
mapdsn.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 9 |
|
mapdsn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 10 |
|
mapdsn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 11 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 12 |
1 4 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 13 |
5 11 6
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 14 |
12 10 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 15 |
1 4 11 7 8 2 3 9 14
|
mapdval |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) } ) |
| 16 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 17 |
10
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑉 ) |
| 18 |
5 6
|
lspssv |
⊢ ( ( 𝑈 ∈ LMod ∧ { 𝑋 } ⊆ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑉 ) |
| 19 |
12 17 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑉 ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑉 ) |
| 21 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
| 22 |
1 4 5 2
|
dochss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑉 ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑂 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) |
| 23 |
16 20 21 22
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑂 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) |
| 24 |
1 4 2 5 6 9 17
|
dochocsp |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑂 ‘ { 𝑋 } ) ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑂 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑂 ‘ { 𝑋 } ) ) |
| 26 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ) |
| 27 |
23 25 26
|
3sstr3d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) |
| 28 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 29 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) → 𝑓 ∈ 𝐹 ) |
| 30 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) → 𝑋 ∈ 𝑉 ) |
| 31 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) → ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) |
| 32 |
1 2 4 5 7 8 28 29 30 31
|
lcfl9a |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ) |
| 33 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) → 𝑈 ∈ LMod ) |
| 34 |
5 7 8 33 29
|
lkrssv |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) → ( 𝐿 ‘ 𝑓 ) ⊆ 𝑉 ) |
| 35 |
1 4 5 2
|
dochss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐿 ‘ 𝑓 ) ⊆ 𝑉 ∧ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑂 ‘ ( 𝑂 ‘ { 𝑋 } ) ) ) |
| 36 |
28 34 31 35
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑂 ‘ ( 𝑂 ‘ { 𝑋 } ) ) ) |
| 37 |
1 4 2 5 6 9 10
|
dochocsn |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑂 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 38 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) → ( 𝑂 ‘ ( 𝑂 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 39 |
36 38
|
sseqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
| 40 |
32 39
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) ∧ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 41 |
27 40
|
impbida |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐹 ) → ( ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) ↔ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) ) ) |
| 42 |
41
|
rabbidva |
⊢ ( 𝜑 → { 𝑓 ∈ 𝐹 ∣ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) } = { 𝑓 ∈ 𝐹 ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) } ) |
| 43 |
15 42
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = { 𝑓 ∈ 𝐹 ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝐿 ‘ 𝑓 ) } ) |