Metamath Proof Explorer


Theorem mapdsn

Description: Value of the map defined by df-mapd at the span of a singleton. (Contributed by NM, 16-Feb-2015)

Ref Expression
Hypotheses mapdsn.h H = LHyp K
mapdsn.o O = ocH K W
mapdsn.m M = mapd K W
mapdsn.u U = DVecH K W
mapdsn.v V = Base U
mapdsn.n N = LSpan U
mapdsn.f F = LFnl U
mapdsn.l L = LKer U
mapdsn.k φ K HL W H
mapdsn.x φ X V
Assertion mapdsn φ M N X = f F | O X L f

Proof

Step Hyp Ref Expression
1 mapdsn.h H = LHyp K
2 mapdsn.o O = ocH K W
3 mapdsn.m M = mapd K W
4 mapdsn.u U = DVecH K W
5 mapdsn.v V = Base U
6 mapdsn.n N = LSpan U
7 mapdsn.f F = LFnl U
8 mapdsn.l L = LKer U
9 mapdsn.k φ K HL W H
10 mapdsn.x φ X V
11 eqid LSubSp U = LSubSp U
12 1 4 9 dvhlmod φ U LMod
13 5 11 6 lspsncl U LMod X V N X LSubSp U
14 12 10 13 syl2anc φ N X LSubSp U
15 1 4 11 7 8 2 3 9 14 mapdval φ M N X = f F | O O L f = L f O L f N X
16 9 ad2antrr φ f F O O L f = L f O L f N X K HL W H
17 10 snssd φ X V
18 5 6 lspssv U LMod X V N X V
19 12 17 18 syl2anc φ N X V
20 19 ad2antrr φ f F O O L f = L f O L f N X N X V
21 simprr φ f F O O L f = L f O L f N X O L f N X
22 1 4 5 2 dochss K HL W H N X V O L f N X O N X O O L f
23 16 20 21 22 syl3anc φ f F O O L f = L f O L f N X O N X O O L f
24 1 4 2 5 6 9 17 dochocsp φ O N X = O X
25 24 ad2antrr φ f F O O L f = L f O L f N X O N X = O X
26 simprl φ f F O O L f = L f O L f N X O O L f = L f
27 23 25 26 3sstr3d φ f F O O L f = L f O L f N X O X L f
28 9 ad2antrr φ f F O X L f K HL W H
29 simplr φ f F O X L f f F
30 10 ad2antrr φ f F O X L f X V
31 simpr φ f F O X L f O X L f
32 1 2 4 5 7 8 28 29 30 31 lcfl9a φ f F O X L f O O L f = L f
33 12 ad2antrr φ f F O X L f U LMod
34 5 7 8 33 29 lkrssv φ f F O X L f L f V
35 1 4 5 2 dochss K HL W H L f V O X L f O L f O O X
36 28 34 31 35 syl3anc φ f F O X L f O L f O O X
37 1 4 2 5 6 9 10 dochocsn φ O O X = N X
38 37 ad2antrr φ f F O X L f O O X = N X
39 36 38 sseqtrd φ f F O X L f O L f N X
40 32 39 jca φ f F O X L f O O L f = L f O L f N X
41 27 40 impbida φ f F O O L f = L f O L f N X O X L f
42 41 rabbidva φ f F | O O L f = L f O L f N X = f F | O X L f
43 15 42 eqtrd φ M N X = f F | O X L f