Metamath Proof Explorer


Theorem mapdsn2

Description: Value of the map defined by df-mapd at the span of a singleton. (Contributed by NM, 16-Feb-2015)

Ref Expression
Hypotheses mapdsn.h H = LHyp K
mapdsn.o O = ocH K W
mapdsn.m M = mapd K W
mapdsn.u U = DVecH K W
mapdsn.v V = Base U
mapdsn.n N = LSpan U
mapdsn.f F = LFnl U
mapdsn.l L = LKer U
mapdsn.k φ K HL W H
mapdsn.x φ X V
mapdsn2.e φ L G = O X
Assertion mapdsn2 φ M N X = f F | L G L f

Proof

Step Hyp Ref Expression
1 mapdsn.h H = LHyp K
2 mapdsn.o O = ocH K W
3 mapdsn.m M = mapd K W
4 mapdsn.u U = DVecH K W
5 mapdsn.v V = Base U
6 mapdsn.n N = LSpan U
7 mapdsn.f F = LFnl U
8 mapdsn.l L = LKer U
9 mapdsn.k φ K HL W H
10 mapdsn.x φ X V
11 mapdsn2.e φ L G = O X
12 1 2 3 4 5 6 7 8 9 10 mapdsn φ M N X = f F | O X L f
13 11 sseq1d φ L G L f O X L f
14 13 rabbidv φ f F | L G L f = f F | O X L f
15 12 14 eqtr4d φ M N X = f F | L G L f