| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdrval.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdrval.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdrval.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdrval.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | mapdrval.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 6 |  | mapdrval.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 7 |  | mapdrval.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 8 |  | mapdrval.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 9 |  | mapdrval.t | ⊢ 𝑇  =  ( LSubSp ‘ 𝐷 ) | 
						
							| 10 |  | mapdrval.c | ⊢ 𝐶  =  { 𝑔  ∈  𝐹  ∣  ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) )  =  ( 𝐿 ‘ 𝑔 ) } | 
						
							| 11 |  | mapdrval.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | mapdrval.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑇 ) | 
						
							| 13 |  | mapdrval.e | ⊢ ( 𝜑  →  𝑅  ⊆  𝐶 ) | 
						
							| 14 |  | mapdrval.q | ⊢ 𝑄  =  ∪  ℎ  ∈  𝑅 ( 𝑂 ‘ ( 𝐿 ‘ ℎ ) ) | 
						
							| 15 |  | mapdrval.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 16 |  | mapdrvallem2.a | ⊢ 𝐴  =  ( LSAtoms ‘ 𝑈 ) | 
						
							| 17 |  | mapdrvallem2.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 18 |  | mapdrvallem2.z | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 19 |  | mapdrvallem2.y | ⊢ 𝑌  =  ( 0g ‘ 𝐷 ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | mapdrvallem2 | ⊢ ( 𝜑  →  { 𝑓  ∈  𝐶  ∣  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑄 }  ⊆  𝑅 ) | 
						
							| 21 |  | 2fveq3 | ⊢ ( ℎ  =  𝑓  →  ( 𝑂 ‘ ( 𝐿 ‘ ℎ ) )  =  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) | 
						
							| 22 | 21 | ssiun2s | ⊢ ( 𝑓  ∈  𝑅  →  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  ∪  ℎ  ∈  𝑅 ( 𝑂 ‘ ( 𝐿 ‘ ℎ ) ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑅 )  →  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  ∪  ℎ  ∈  𝑅 ( 𝑂 ‘ ( 𝐿 ‘ ℎ ) ) ) | 
						
							| 24 | 23 14 | sseqtrrdi | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑅 )  →  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑄 ) | 
						
							| 25 | 13 24 | ssrabdv | ⊢ ( 𝜑  →  𝑅  ⊆  { 𝑓  ∈  𝐶  ∣  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑄 } ) | 
						
							| 26 | 20 25 | eqssd | ⊢ ( 𝜑  →  { 𝑓  ∈  𝐶  ∣  ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  𝑄 }  =  𝑅 ) |