Metamath Proof Explorer


Theorem mapdrvallem3

Description: Lemma for mapdrval . (Contributed by NM, 2-Feb-2015)

Ref Expression
Hypotheses mapdrval.h
|- H = ( LHyp ` K )
mapdrval.o
|- O = ( ( ocH ` K ) ` W )
mapdrval.m
|- M = ( ( mapd ` K ) ` W )
mapdrval.u
|- U = ( ( DVecH ` K ) ` W )
mapdrval.s
|- S = ( LSubSp ` U )
mapdrval.f
|- F = ( LFnl ` U )
mapdrval.l
|- L = ( LKer ` U )
mapdrval.d
|- D = ( LDual ` U )
mapdrval.t
|- T = ( LSubSp ` D )
mapdrval.c
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) }
mapdrval.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdrval.r
|- ( ph -> R e. T )
mapdrval.e
|- ( ph -> R C_ C )
mapdrval.q
|- Q = U_ h e. R ( O ` ( L ` h ) )
mapdrval.v
|- V = ( Base ` U )
mapdrvallem2.a
|- A = ( LSAtoms ` U )
mapdrvallem2.n
|- N = ( LSpan ` U )
mapdrvallem2.z
|- .0. = ( 0g ` U )
mapdrvallem2.y
|- Y = ( 0g ` D )
Assertion mapdrvallem3
|- ( ph -> { f e. C | ( O ` ( L ` f ) ) C_ Q } = R )

Proof

Step Hyp Ref Expression
1 mapdrval.h
 |-  H = ( LHyp ` K )
2 mapdrval.o
 |-  O = ( ( ocH ` K ) ` W )
3 mapdrval.m
 |-  M = ( ( mapd ` K ) ` W )
4 mapdrval.u
 |-  U = ( ( DVecH ` K ) ` W )
5 mapdrval.s
 |-  S = ( LSubSp ` U )
6 mapdrval.f
 |-  F = ( LFnl ` U )
7 mapdrval.l
 |-  L = ( LKer ` U )
8 mapdrval.d
 |-  D = ( LDual ` U )
9 mapdrval.t
 |-  T = ( LSubSp ` D )
10 mapdrval.c
 |-  C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) }
11 mapdrval.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
12 mapdrval.r
 |-  ( ph -> R e. T )
13 mapdrval.e
 |-  ( ph -> R C_ C )
14 mapdrval.q
 |-  Q = U_ h e. R ( O ` ( L ` h ) )
15 mapdrval.v
 |-  V = ( Base ` U )
16 mapdrvallem2.a
 |-  A = ( LSAtoms ` U )
17 mapdrvallem2.n
 |-  N = ( LSpan ` U )
18 mapdrvallem2.z
 |-  .0. = ( 0g ` U )
19 mapdrvallem2.y
 |-  Y = ( 0g ` D )
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 mapdrvallem2
 |-  ( ph -> { f e. C | ( O ` ( L ` f ) ) C_ Q } C_ R )
21 2fveq3
 |-  ( h = f -> ( O ` ( L ` h ) ) = ( O ` ( L ` f ) ) )
22 21 ssiun2s
 |-  ( f e. R -> ( O ` ( L ` f ) ) C_ U_ h e. R ( O ` ( L ` h ) ) )
23 22 adantl
 |-  ( ( ph /\ f e. R ) -> ( O ` ( L ` f ) ) C_ U_ h e. R ( O ` ( L ` h ) ) )
24 23 14 sseqtrrdi
 |-  ( ( ph /\ f e. R ) -> ( O ` ( L ` f ) ) C_ Q )
25 13 24 ssrabdv
 |-  ( ph -> R C_ { f e. C | ( O ` ( L ` f ) ) C_ Q } )
26 20 25 eqssd
 |-  ( ph -> { f e. C | ( O ` ( L ` f ) ) C_ Q } = R )