| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdrval.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdrval.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | mapdrval.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 4 |  | mapdrval.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 5 |  | mapdrval.s |  |-  S = ( LSubSp ` U ) | 
						
							| 6 |  | mapdrval.f |  |-  F = ( LFnl ` U ) | 
						
							| 7 |  | mapdrval.l |  |-  L = ( LKer ` U ) | 
						
							| 8 |  | mapdrval.d |  |-  D = ( LDual ` U ) | 
						
							| 9 |  | mapdrval.t |  |-  T = ( LSubSp ` D ) | 
						
							| 10 |  | mapdrval.c |  |-  C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } | 
						
							| 11 |  | mapdrval.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | mapdrval.r |  |-  ( ph -> R e. T ) | 
						
							| 13 |  | mapdrval.e |  |-  ( ph -> R C_ C ) | 
						
							| 14 |  | mapdrval.q |  |-  Q = U_ h e. R ( O ` ( L ` h ) ) | 
						
							| 15 |  | mapdrval.v |  |-  V = ( Base ` U ) | 
						
							| 16 |  | mapdrvallem2.a |  |-  A = ( LSAtoms ` U ) | 
						
							| 17 |  | mapdrvallem2.n |  |-  N = ( LSpan ` U ) | 
						
							| 18 |  | mapdrvallem2.z |  |-  .0. = ( 0g ` U ) | 
						
							| 19 |  | mapdrvallem2.y |  |-  Y = ( 0g ` D ) | 
						
							| 20 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | mapdrvallem2 |  |-  ( ph -> { f e. C | ( O ` ( L ` f ) ) C_ Q } C_ R ) | 
						
							| 21 |  | 2fveq3 |  |-  ( h = f -> ( O ` ( L ` h ) ) = ( O ` ( L ` f ) ) ) | 
						
							| 22 | 21 | ssiun2s |  |-  ( f e. R -> ( O ` ( L ` f ) ) C_ U_ h e. R ( O ` ( L ` h ) ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ph /\ f e. R ) -> ( O ` ( L ` f ) ) C_ U_ h e. R ( O ` ( L ` h ) ) ) | 
						
							| 24 | 23 14 | sseqtrrdi |  |-  ( ( ph /\ f e. R ) -> ( O ` ( L ` f ) ) C_ Q ) | 
						
							| 25 | 13 24 | ssrabdv |  |-  ( ph -> R C_ { f e. C | ( O ` ( L ` f ) ) C_ Q } ) | 
						
							| 26 | 20 25 | eqssd |  |-  ( ph -> { f e. C | ( O ` ( L ` f ) ) C_ Q } = R ) |