Step |
Hyp |
Ref |
Expression |
1 |
|
mapdrval.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdrval.o |
|- O = ( ( ocH ` K ) ` W ) |
3 |
|
mapdrval.m |
|- M = ( ( mapd ` K ) ` W ) |
4 |
|
mapdrval.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
mapdrval.s |
|- S = ( LSubSp ` U ) |
6 |
|
mapdrval.f |
|- F = ( LFnl ` U ) |
7 |
|
mapdrval.l |
|- L = ( LKer ` U ) |
8 |
|
mapdrval.d |
|- D = ( LDual ` U ) |
9 |
|
mapdrval.t |
|- T = ( LSubSp ` D ) |
10 |
|
mapdrval.c |
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
11 |
|
mapdrval.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
mapdrval.r |
|- ( ph -> R e. T ) |
13 |
|
mapdrval.e |
|- ( ph -> R C_ C ) |
14 |
|
mapdrval.q |
|- Q = U_ h e. R ( O ` ( L ` h ) ) |
15 |
|
mapdrval.v |
|- V = ( Base ` U ) |
16 |
|
mapdrvallem2.a |
|- A = ( LSAtoms ` U ) |
17 |
|
mapdrvallem2.n |
|- N = ( LSpan ` U ) |
18 |
|
mapdrvallem2.z |
|- .0. = ( 0g ` U ) |
19 |
|
mapdrvallem2.y |
|- Y = ( 0g ` D ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
mapdrvallem2 |
|- ( ph -> { f e. C | ( O ` ( L ` f ) ) C_ Q } C_ R ) |
21 |
|
2fveq3 |
|- ( h = f -> ( O ` ( L ` h ) ) = ( O ` ( L ` f ) ) ) |
22 |
21
|
ssiun2s |
|- ( f e. R -> ( O ` ( L ` f ) ) C_ U_ h e. R ( O ` ( L ` h ) ) ) |
23 |
22
|
adantl |
|- ( ( ph /\ f e. R ) -> ( O ` ( L ` f ) ) C_ U_ h e. R ( O ` ( L ` h ) ) ) |
24 |
23 14
|
sseqtrrdi |
|- ( ( ph /\ f e. R ) -> ( O ` ( L ` f ) ) C_ Q ) |
25 |
13 24
|
ssrabdv |
|- ( ph -> R C_ { f e. C | ( O ` ( L ` f ) ) C_ Q } ) |
26 |
20 25
|
eqssd |
|- ( ph -> { f e. C | ( O ` ( L ` f ) ) C_ Q } = R ) |