Metamath Proof Explorer


Theorem mapdsn3

Description: Value of the map defined by df-mapd at the span of a singleton. (Contributed by NM, 17-Feb-2015)

Ref Expression
Hypotheses mapdsn3.h
|- H = ( LHyp ` K )
mapdsn3.o
|- O = ( ( ocH ` K ) ` W )
mapdsn3.m
|- M = ( ( mapd ` K ) ` W )
mapdsn3.u
|- U = ( ( DVecH ` K ) ` W )
mapdsn3.v
|- V = ( Base ` U )
mapdsn3.n
|- N = ( LSpan ` U )
mapdsn3.f
|- F = ( LFnl ` U )
mapdsn3.l
|- L = ( LKer ` U )
mapdsn3.d
|- D = ( LDual ` U )
mapdsn3.p
|- P = ( LSpan ` D )
mapdsn3.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdsn3.x
|- ( ph -> X e. V )
mapdsn3.g
|- ( ph -> G e. F )
mapdsn3.e
|- ( ph -> ( L ` G ) = ( O ` { X } ) )
Assertion mapdsn3
|- ( ph -> ( M ` ( N ` { X } ) ) = ( P ` { G } ) )

Proof

Step Hyp Ref Expression
1 mapdsn3.h
 |-  H = ( LHyp ` K )
2 mapdsn3.o
 |-  O = ( ( ocH ` K ) ` W )
3 mapdsn3.m
 |-  M = ( ( mapd ` K ) ` W )
4 mapdsn3.u
 |-  U = ( ( DVecH ` K ) ` W )
5 mapdsn3.v
 |-  V = ( Base ` U )
6 mapdsn3.n
 |-  N = ( LSpan ` U )
7 mapdsn3.f
 |-  F = ( LFnl ` U )
8 mapdsn3.l
 |-  L = ( LKer ` U )
9 mapdsn3.d
 |-  D = ( LDual ` U )
10 mapdsn3.p
 |-  P = ( LSpan ` D )
11 mapdsn3.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
12 mapdsn3.x
 |-  ( ph -> X e. V )
13 mapdsn3.g
 |-  ( ph -> G e. F )
14 mapdsn3.e
 |-  ( ph -> ( L ` G ) = ( O ` { X } ) )
15 1 2 3 4 5 6 7 8 11 12 14 mapdsn2
 |-  ( ph -> ( M ` ( N ` { X } ) ) = { f e. F | ( L ` G ) C_ ( L ` f ) } )
16 1 4 11 dvhlvec
 |-  ( ph -> U e. LVec )
17 7 8 9 10 16 13 ldual1dim
 |-  ( ph -> ( P ` { G } ) = { f e. F | ( L ` G ) C_ ( L ` f ) } )
18 15 17 eqtr4d
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( P ` { G } ) )