Description: Value of the map defined by df-mapd at the span of a singleton. (Contributed by NM, 17-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdsn3.h | |- H = ( LHyp ` K ) |
|
mapdsn3.o | |- O = ( ( ocH ` K ) ` W ) |
||
mapdsn3.m | |- M = ( ( mapd ` K ) ` W ) |
||
mapdsn3.u | |- U = ( ( DVecH ` K ) ` W ) |
||
mapdsn3.v | |- V = ( Base ` U ) |
||
mapdsn3.n | |- N = ( LSpan ` U ) |
||
mapdsn3.f | |- F = ( LFnl ` U ) |
||
mapdsn3.l | |- L = ( LKer ` U ) |
||
mapdsn3.d | |- D = ( LDual ` U ) |
||
mapdsn3.p | |- P = ( LSpan ` D ) |
||
mapdsn3.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
mapdsn3.x | |- ( ph -> X e. V ) |
||
mapdsn3.g | |- ( ph -> G e. F ) |
||
mapdsn3.e | |- ( ph -> ( L ` G ) = ( O ` { X } ) ) |
||
Assertion | mapdsn3 | |- ( ph -> ( M ` ( N ` { X } ) ) = ( P ` { G } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdsn3.h | |- H = ( LHyp ` K ) |
|
2 | mapdsn3.o | |- O = ( ( ocH ` K ) ` W ) |
|
3 | mapdsn3.m | |- M = ( ( mapd ` K ) ` W ) |
|
4 | mapdsn3.u | |- U = ( ( DVecH ` K ) ` W ) |
|
5 | mapdsn3.v | |- V = ( Base ` U ) |
|
6 | mapdsn3.n | |- N = ( LSpan ` U ) |
|
7 | mapdsn3.f | |- F = ( LFnl ` U ) |
|
8 | mapdsn3.l | |- L = ( LKer ` U ) |
|
9 | mapdsn3.d | |- D = ( LDual ` U ) |
|
10 | mapdsn3.p | |- P = ( LSpan ` D ) |
|
11 | mapdsn3.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
12 | mapdsn3.x | |- ( ph -> X e. V ) |
|
13 | mapdsn3.g | |- ( ph -> G e. F ) |
|
14 | mapdsn3.e | |- ( ph -> ( L ` G ) = ( O ` { X } ) ) |
|
15 | 1 2 3 4 5 6 7 8 11 12 14 | mapdsn2 | |- ( ph -> ( M ` ( N ` { X } ) ) = { f e. F | ( L ` G ) C_ ( L ` f ) } ) |
16 | 1 4 11 | dvhlvec | |- ( ph -> U e. LVec ) |
17 | 7 8 9 10 16 13 | ldual1dim | |- ( ph -> ( P ` { G } ) = { f e. F | ( L ` G ) C_ ( L ` f ) } ) |
18 | 15 17 | eqtr4d | |- ( ph -> ( M ` ( N ` { X } ) ) = ( P ` { G } ) ) |