| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdord.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdord.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | mapdord.s |  |-  S = ( LSubSp ` U ) | 
						
							| 4 |  | mapdord.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 5 |  | mapdord.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 6 |  | mapdord.x |  |-  ( ph -> X e. S ) | 
						
							| 7 |  | mapdord.y |  |-  ( ph -> Y e. S ) | 
						
							| 8 |  | mapdord.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 9 |  | mapdord.a |  |-  A = ( LSAtoms ` U ) | 
						
							| 10 |  | mapdord.f |  |-  F = ( LFnl ` U ) | 
						
							| 11 |  | mapdord.c |  |-  J = ( LSHyp ` U ) | 
						
							| 12 |  | mapdord.l |  |-  L = ( LKer ` U ) | 
						
							| 13 |  | mapdord.t |  |-  T = { g e. F | ( O ` ( O ` ( L ` g ) ) ) e. J } | 
						
							| 14 |  | mapdord.q |  |-  C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } | 
						
							| 15 | 1 2 3 10 12 8 4 5 6 14 | mapdvalc |  |-  ( ph -> ( M ` X ) = { f e. C | ( O ` ( L ` f ) ) C_ X } ) | 
						
							| 16 | 1 2 3 10 12 8 4 5 7 14 | mapdvalc |  |-  ( ph -> ( M ` Y ) = { f e. C | ( O ` ( L ` f ) ) C_ Y } ) | 
						
							| 17 | 15 16 | sseq12d |  |-  ( ph -> ( ( M ` X ) C_ ( M ` Y ) <-> { f e. C | ( O ` ( L ` f ) ) C_ X } C_ { f e. C | ( O ` ( L ` f ) ) C_ Y } ) ) | 
						
							| 18 |  | ss2rab |  |-  ( { f e. C | ( O ` ( L ` f ) ) C_ X } C_ { f e. C | ( O ` ( L ` f ) ) C_ Y } <-> A. f e. C ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) | 
						
							| 19 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 20 | 1 8 2 19 11 10 12 13 14 5 | mapdordlem1a |  |-  ( ph -> ( f e. T <-> ( f e. C /\ ( O ` ( O ` ( L ` f ) ) ) e. J ) ) ) | 
						
							| 21 |  | simprl |  |-  ( ( ph /\ ( f e. C /\ ( O ` ( O ` ( L ` f ) ) ) e. J ) ) -> f e. C ) | 
						
							| 22 |  | idd |  |-  ( ( ph /\ ( f e. C /\ ( O ` ( O ` ( L ` f ) ) ) e. J ) ) -> ( ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) | 
						
							| 23 | 21 22 | embantd |  |-  ( ( ph /\ ( f e. C /\ ( O ` ( O ` ( L ` f ) ) ) e. J ) ) -> ( ( f e. C -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) | 
						
							| 24 | 23 | ex |  |-  ( ph -> ( ( f e. C /\ ( O ` ( O ` ( L ` f ) ) ) e. J ) -> ( ( f e. C -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) ) | 
						
							| 25 | 20 24 | sylbid |  |-  ( ph -> ( f e. T -> ( ( f e. C -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) ) | 
						
							| 26 | 25 | com23 |  |-  ( ph -> ( ( f e. C -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) -> ( f e. T -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) ) | 
						
							| 27 | 26 | ralimdv2 |  |-  ( ph -> ( A. f e. C ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) -> A. f e. T ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) | 
						
							| 28 | 18 27 | biimtrid |  |-  ( ph -> ( { f e. C | ( O ` ( L ` f ) ) C_ X } C_ { f e. C | ( O ` ( L ` f ) ) C_ Y } -> A. f e. T ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) | 
						
							| 29 | 1 2 5 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 30 | 3 9 29 6 7 | lssatle |  |-  ( ph -> ( X C_ Y <-> A. p e. A ( p C_ X -> p C_ Y ) ) ) | 
						
							| 31 | 13 | mapdordlem1 |  |-  ( f e. T <-> ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) e. J ) ) | 
						
							| 32 | 31 | simprbi |  |-  ( f e. T -> ( O ` ( O ` ( L ` f ) ) ) e. J ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ f e. T ) -> ( O ` ( O ` ( L ` f ) ) ) e. J ) | 
						
							| 34 | 5 | adantr |  |-  ( ( ph /\ f e. T ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 35 | 31 | simplbi |  |-  ( f e. T -> f e. F ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ph /\ f e. T ) -> f e. F ) | 
						
							| 37 | 1 8 2 10 11 12 34 36 | dochlkr |  |-  ( ( ph /\ f e. T ) -> ( ( O ` ( O ` ( L ` f ) ) ) e. J <-> ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( L ` f ) e. J ) ) ) | 
						
							| 38 | 33 37 | mpbid |  |-  ( ( ph /\ f e. T ) -> ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( L ` f ) e. J ) ) | 
						
							| 39 | 38 | simpld |  |-  ( ( ph /\ f e. T ) -> ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) | 
						
							| 40 | 38 | simprd |  |-  ( ( ph /\ f e. T ) -> ( L ` f ) e. J ) | 
						
							| 41 | 1 8 2 9 11 34 40 | dochshpsat |  |-  ( ( ph /\ f e. T ) -> ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) <-> ( O ` ( L ` f ) ) e. A ) ) | 
						
							| 42 | 39 41 | mpbid |  |-  ( ( ph /\ f e. T ) -> ( O ` ( L ` f ) ) e. A ) | 
						
							| 43 | 1 2 5 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ p e. A ) -> U e. LVec ) | 
						
							| 45 | 5 | adantr |  |-  ( ( ph /\ p e. A ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 46 |  | simpr |  |-  ( ( ph /\ p e. A ) -> p e. A ) | 
						
							| 47 | 1 2 8 9 11 45 46 | dochsatshp |  |-  ( ( ph /\ p e. A ) -> ( O ` p ) e. J ) | 
						
							| 48 | 11 10 12 | lshpkrex |  |-  ( ( U e. LVec /\ ( O ` p ) e. J ) -> E. f e. F ( L ` f ) = ( O ` p ) ) | 
						
							| 49 | 44 47 48 | syl2anc |  |-  ( ( ph /\ p e. A ) -> E. f e. F ( L ` f ) = ( O ` p ) ) | 
						
							| 50 |  | df-rex |  |-  ( E. f e. F ( L ` f ) = ( O ` p ) <-> E. f ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) | 
						
							| 51 | 49 50 | sylib |  |-  ( ( ph /\ p e. A ) -> E. f ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) | 
						
							| 52 |  | simprl |  |-  ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> f e. F ) | 
						
							| 53 |  | simprr |  |-  ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( L ` f ) = ( O ` p ) ) | 
						
							| 54 | 53 | fveq2d |  |-  ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( O ` ( L ` f ) ) = ( O ` ( O ` p ) ) ) | 
						
							| 55 | 54 | fveq2d |  |-  ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( O ` ( O ` ( L ` f ) ) ) = ( O ` ( O ` ( O ` p ) ) ) ) | 
						
							| 56 | 29 | adantr |  |-  ( ( ph /\ p e. A ) -> U e. LMod ) | 
						
							| 57 | 19 9 56 46 | lsatssv |  |-  ( ( ph /\ p e. A ) -> p C_ ( Base ` U ) ) | 
						
							| 58 |  | eqid |  |-  ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) | 
						
							| 59 | 1 58 2 19 8 | dochcl |  |-  ( ( ( K e. HL /\ W e. H ) /\ p C_ ( Base ` U ) ) -> ( O ` p ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 60 | 45 57 59 | syl2anc |  |-  ( ( ph /\ p e. A ) -> ( O ` p ) e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 61 | 1 58 8 | dochoc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( O ` p ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( O ` ( O ` ( O ` p ) ) ) = ( O ` p ) ) | 
						
							| 62 | 45 60 61 | syl2anc |  |-  ( ( ph /\ p e. A ) -> ( O ` ( O ` ( O ` p ) ) ) = ( O ` p ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( O ` ( O ` ( O ` p ) ) ) = ( O ` p ) ) | 
						
							| 64 | 55 63 | eqtrd |  |-  ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( O ` ( O ` ( L ` f ) ) ) = ( O ` p ) ) | 
						
							| 65 | 47 | adantr |  |-  ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( O ` p ) e. J ) | 
						
							| 66 | 64 65 | eqeltrd |  |-  ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( O ` ( O ` ( L ` f ) ) ) e. J ) | 
						
							| 67 | 52 66 31 | sylanbrc |  |-  ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> f e. T ) | 
						
							| 68 | 1 2 58 9 | dih1dimat |  |-  ( ( ( K e. HL /\ W e. H ) /\ p e. A ) -> p e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 69 | 45 46 68 | syl2anc |  |-  ( ( ph /\ p e. A ) -> p e. ran ( ( DIsoH ` K ) ` W ) ) | 
						
							| 70 | 1 58 8 | dochoc |  |-  ( ( ( K e. HL /\ W e. H ) /\ p e. ran ( ( DIsoH ` K ) ` W ) ) -> ( O ` ( O ` p ) ) = p ) | 
						
							| 71 | 45 69 70 | syl2anc |  |-  ( ( ph /\ p e. A ) -> ( O ` ( O ` p ) ) = p ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( O ` ( O ` p ) ) = p ) | 
						
							| 73 | 54 72 | eqtr2d |  |-  ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> p = ( O ` ( L ` f ) ) ) | 
						
							| 74 | 67 73 | jca |  |-  ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( f e. T /\ p = ( O ` ( L ` f ) ) ) ) | 
						
							| 75 | 74 | ex |  |-  ( ( ph /\ p e. A ) -> ( ( f e. F /\ ( L ` f ) = ( O ` p ) ) -> ( f e. T /\ p = ( O ` ( L ` f ) ) ) ) ) | 
						
							| 76 | 75 | eximdv |  |-  ( ( ph /\ p e. A ) -> ( E. f ( f e. F /\ ( L ` f ) = ( O ` p ) ) -> E. f ( f e. T /\ p = ( O ` ( L ` f ) ) ) ) ) | 
						
							| 77 | 51 76 | mpd |  |-  ( ( ph /\ p e. A ) -> E. f ( f e. T /\ p = ( O ` ( L ` f ) ) ) ) | 
						
							| 78 |  | df-rex |  |-  ( E. f e. T p = ( O ` ( L ` f ) ) <-> E. f ( f e. T /\ p = ( O ` ( L ` f ) ) ) ) | 
						
							| 79 | 77 78 | sylibr |  |-  ( ( ph /\ p e. A ) -> E. f e. T p = ( O ` ( L ` f ) ) ) | 
						
							| 80 |  | sseq1 |  |-  ( p = ( O ` ( L ` f ) ) -> ( p C_ X <-> ( O ` ( L ` f ) ) C_ X ) ) | 
						
							| 81 |  | sseq1 |  |-  ( p = ( O ` ( L ` f ) ) -> ( p C_ Y <-> ( O ` ( L ` f ) ) C_ Y ) ) | 
						
							| 82 | 80 81 | imbi12d |  |-  ( p = ( O ` ( L ` f ) ) -> ( ( p C_ X -> p C_ Y ) <-> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) | 
						
							| 83 | 82 | adantl |  |-  ( ( ph /\ p = ( O ` ( L ` f ) ) ) -> ( ( p C_ X -> p C_ Y ) <-> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) | 
						
							| 84 | 42 79 83 | ralxfrd |  |-  ( ph -> ( A. p e. A ( p C_ X -> p C_ Y ) <-> A. f e. T ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) | 
						
							| 85 | 30 84 | bitr2d |  |-  ( ph -> ( A. f e. T ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) <-> X C_ Y ) ) | 
						
							| 86 | 28 85 | sylibd |  |-  ( ph -> ( { f e. C | ( O ` ( L ` f ) ) C_ X } C_ { f e. C | ( O ` ( L ` f ) ) C_ Y } -> X C_ Y ) ) | 
						
							| 87 |  | simplr |  |-  ( ( ( ph /\ X C_ Y ) /\ f e. C ) -> X C_ Y ) | 
						
							| 88 |  | sstr |  |-  ( ( ( O ` ( L ` f ) ) C_ X /\ X C_ Y ) -> ( O ` ( L ` f ) ) C_ Y ) | 
						
							| 89 | 88 | ancoms |  |-  ( ( X C_ Y /\ ( O ` ( L ` f ) ) C_ X ) -> ( O ` ( L ` f ) ) C_ Y ) | 
						
							| 90 | 89 | a1i |  |-  ( ( ( ph /\ X C_ Y ) /\ f e. C ) -> ( ( X C_ Y /\ ( O ` ( L ` f ) ) C_ X ) -> ( O ` ( L ` f ) ) C_ Y ) ) | 
						
							| 91 | 87 90 | mpand |  |-  ( ( ( ph /\ X C_ Y ) /\ f e. C ) -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) | 
						
							| 92 | 91 | ss2rabdv |  |-  ( ( ph /\ X C_ Y ) -> { f e. C | ( O ` ( L ` f ) ) C_ X } C_ { f e. C | ( O ` ( L ` f ) ) C_ Y } ) | 
						
							| 93 | 92 | ex |  |-  ( ph -> ( X C_ Y -> { f e. C | ( O ` ( L ` f ) ) C_ X } C_ { f e. C | ( O ` ( L ` f ) ) C_ Y } ) ) | 
						
							| 94 | 86 93 | impbid |  |-  ( ph -> ( { f e. C | ( O ` ( L ` f ) ) C_ X } C_ { f e. C | ( O ` ( L ` f ) ) C_ Y } <-> X C_ Y ) ) | 
						
							| 95 | 17 94 | bitrd |  |-  ( ph -> ( ( M ` X ) C_ ( M ` Y ) <-> X C_ Y ) ) |