| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdord.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdord.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
mapdord.s |
|- S = ( LSubSp ` U ) |
| 4 |
|
mapdord.m |
|- M = ( ( mapd ` K ) ` W ) |
| 5 |
|
mapdord.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 6 |
|
mapdord.x |
|- ( ph -> X e. S ) |
| 7 |
|
mapdord.y |
|- ( ph -> Y e. S ) |
| 8 |
|
mapdord.o |
|- O = ( ( ocH ` K ) ` W ) |
| 9 |
|
mapdord.a |
|- A = ( LSAtoms ` U ) |
| 10 |
|
mapdord.f |
|- F = ( LFnl ` U ) |
| 11 |
|
mapdord.c |
|- J = ( LSHyp ` U ) |
| 12 |
|
mapdord.l |
|- L = ( LKer ` U ) |
| 13 |
|
mapdord.t |
|- T = { g e. F | ( O ` ( O ` ( L ` g ) ) ) e. J } |
| 14 |
|
mapdord.q |
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
| 15 |
1 2 3 10 12 8 4 5 6 14
|
mapdvalc |
|- ( ph -> ( M ` X ) = { f e. C | ( O ` ( L ` f ) ) C_ X } ) |
| 16 |
1 2 3 10 12 8 4 5 7 14
|
mapdvalc |
|- ( ph -> ( M ` Y ) = { f e. C | ( O ` ( L ` f ) ) C_ Y } ) |
| 17 |
15 16
|
sseq12d |
|- ( ph -> ( ( M ` X ) C_ ( M ` Y ) <-> { f e. C | ( O ` ( L ` f ) ) C_ X } C_ { f e. C | ( O ` ( L ` f ) ) C_ Y } ) ) |
| 18 |
|
ss2rab |
|- ( { f e. C | ( O ` ( L ` f ) ) C_ X } C_ { f e. C | ( O ` ( L ` f ) ) C_ Y } <-> A. f e. C ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) |
| 19 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 20 |
1 8 2 19 11 10 12 13 14 5
|
mapdordlem1a |
|- ( ph -> ( f e. T <-> ( f e. C /\ ( O ` ( O ` ( L ` f ) ) ) e. J ) ) ) |
| 21 |
|
simprl |
|- ( ( ph /\ ( f e. C /\ ( O ` ( O ` ( L ` f ) ) ) e. J ) ) -> f e. C ) |
| 22 |
|
idd |
|- ( ( ph /\ ( f e. C /\ ( O ` ( O ` ( L ` f ) ) ) e. J ) ) -> ( ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) |
| 23 |
21 22
|
embantd |
|- ( ( ph /\ ( f e. C /\ ( O ` ( O ` ( L ` f ) ) ) e. J ) ) -> ( ( f e. C -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) |
| 24 |
23
|
ex |
|- ( ph -> ( ( f e. C /\ ( O ` ( O ` ( L ` f ) ) ) e. J ) -> ( ( f e. C -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) ) |
| 25 |
20 24
|
sylbid |
|- ( ph -> ( f e. T -> ( ( f e. C -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) ) |
| 26 |
25
|
com23 |
|- ( ph -> ( ( f e. C -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) -> ( f e. T -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) ) |
| 27 |
26
|
ralimdv2 |
|- ( ph -> ( A. f e. C ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) -> A. f e. T ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) |
| 28 |
18 27
|
biimtrid |
|- ( ph -> ( { f e. C | ( O ` ( L ` f ) ) C_ X } C_ { f e. C | ( O ` ( L ` f ) ) C_ Y } -> A. f e. T ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) |
| 29 |
1 2 5
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 30 |
3 9 29 6 7
|
lssatle |
|- ( ph -> ( X C_ Y <-> A. p e. A ( p C_ X -> p C_ Y ) ) ) |
| 31 |
13
|
mapdordlem1 |
|- ( f e. T <-> ( f e. F /\ ( O ` ( O ` ( L ` f ) ) ) e. J ) ) |
| 32 |
31
|
simprbi |
|- ( f e. T -> ( O ` ( O ` ( L ` f ) ) ) e. J ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ f e. T ) -> ( O ` ( O ` ( L ` f ) ) ) e. J ) |
| 34 |
5
|
adantr |
|- ( ( ph /\ f e. T ) -> ( K e. HL /\ W e. H ) ) |
| 35 |
31
|
simplbi |
|- ( f e. T -> f e. F ) |
| 36 |
35
|
adantl |
|- ( ( ph /\ f e. T ) -> f e. F ) |
| 37 |
1 8 2 10 11 12 34 36
|
dochlkr |
|- ( ( ph /\ f e. T ) -> ( ( O ` ( O ` ( L ` f ) ) ) e. J <-> ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( L ` f ) e. J ) ) ) |
| 38 |
33 37
|
mpbid |
|- ( ( ph /\ f e. T ) -> ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) /\ ( L ` f ) e. J ) ) |
| 39 |
38
|
simpld |
|- ( ( ph /\ f e. T ) -> ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) ) |
| 40 |
38
|
simprd |
|- ( ( ph /\ f e. T ) -> ( L ` f ) e. J ) |
| 41 |
1 8 2 9 11 34 40
|
dochshpsat |
|- ( ( ph /\ f e. T ) -> ( ( O ` ( O ` ( L ` f ) ) ) = ( L ` f ) <-> ( O ` ( L ` f ) ) e. A ) ) |
| 42 |
39 41
|
mpbid |
|- ( ( ph /\ f e. T ) -> ( O ` ( L ` f ) ) e. A ) |
| 43 |
1 2 5
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 44 |
43
|
adantr |
|- ( ( ph /\ p e. A ) -> U e. LVec ) |
| 45 |
5
|
adantr |
|- ( ( ph /\ p e. A ) -> ( K e. HL /\ W e. H ) ) |
| 46 |
|
simpr |
|- ( ( ph /\ p e. A ) -> p e. A ) |
| 47 |
1 2 8 9 11 45 46
|
dochsatshp |
|- ( ( ph /\ p e. A ) -> ( O ` p ) e. J ) |
| 48 |
11 10 12
|
lshpkrex |
|- ( ( U e. LVec /\ ( O ` p ) e. J ) -> E. f e. F ( L ` f ) = ( O ` p ) ) |
| 49 |
44 47 48
|
syl2anc |
|- ( ( ph /\ p e. A ) -> E. f e. F ( L ` f ) = ( O ` p ) ) |
| 50 |
|
df-rex |
|- ( E. f e. F ( L ` f ) = ( O ` p ) <-> E. f ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) |
| 51 |
49 50
|
sylib |
|- ( ( ph /\ p e. A ) -> E. f ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) |
| 52 |
|
simprl |
|- ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> f e. F ) |
| 53 |
|
simprr |
|- ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( L ` f ) = ( O ` p ) ) |
| 54 |
53
|
fveq2d |
|- ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( O ` ( L ` f ) ) = ( O ` ( O ` p ) ) ) |
| 55 |
54
|
fveq2d |
|- ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( O ` ( O ` ( L ` f ) ) ) = ( O ` ( O ` ( O ` p ) ) ) ) |
| 56 |
29
|
adantr |
|- ( ( ph /\ p e. A ) -> U e. LMod ) |
| 57 |
19 9 56 46
|
lsatssv |
|- ( ( ph /\ p e. A ) -> p C_ ( Base ` U ) ) |
| 58 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
| 59 |
1 58 2 19 8
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ p C_ ( Base ` U ) ) -> ( O ` p ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 60 |
45 57 59
|
syl2anc |
|- ( ( ph /\ p e. A ) -> ( O ` p ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 61 |
1 58 8
|
dochoc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( O ` p ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( O ` ( O ` ( O ` p ) ) ) = ( O ` p ) ) |
| 62 |
45 60 61
|
syl2anc |
|- ( ( ph /\ p e. A ) -> ( O ` ( O ` ( O ` p ) ) ) = ( O ` p ) ) |
| 63 |
62
|
adantr |
|- ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( O ` ( O ` ( O ` p ) ) ) = ( O ` p ) ) |
| 64 |
55 63
|
eqtrd |
|- ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( O ` ( O ` ( L ` f ) ) ) = ( O ` p ) ) |
| 65 |
47
|
adantr |
|- ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( O ` p ) e. J ) |
| 66 |
64 65
|
eqeltrd |
|- ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( O ` ( O ` ( L ` f ) ) ) e. J ) |
| 67 |
52 66 31
|
sylanbrc |
|- ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> f e. T ) |
| 68 |
1 2 58 9
|
dih1dimat |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. A ) -> p e. ran ( ( DIsoH ` K ) ` W ) ) |
| 69 |
45 46 68
|
syl2anc |
|- ( ( ph /\ p e. A ) -> p e. ran ( ( DIsoH ` K ) ` W ) ) |
| 70 |
1 58 8
|
dochoc |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ran ( ( DIsoH ` K ) ` W ) ) -> ( O ` ( O ` p ) ) = p ) |
| 71 |
45 69 70
|
syl2anc |
|- ( ( ph /\ p e. A ) -> ( O ` ( O ` p ) ) = p ) |
| 72 |
71
|
adantr |
|- ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( O ` ( O ` p ) ) = p ) |
| 73 |
54 72
|
eqtr2d |
|- ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> p = ( O ` ( L ` f ) ) ) |
| 74 |
67 73
|
jca |
|- ( ( ( ph /\ p e. A ) /\ ( f e. F /\ ( L ` f ) = ( O ` p ) ) ) -> ( f e. T /\ p = ( O ` ( L ` f ) ) ) ) |
| 75 |
74
|
ex |
|- ( ( ph /\ p e. A ) -> ( ( f e. F /\ ( L ` f ) = ( O ` p ) ) -> ( f e. T /\ p = ( O ` ( L ` f ) ) ) ) ) |
| 76 |
75
|
eximdv |
|- ( ( ph /\ p e. A ) -> ( E. f ( f e. F /\ ( L ` f ) = ( O ` p ) ) -> E. f ( f e. T /\ p = ( O ` ( L ` f ) ) ) ) ) |
| 77 |
51 76
|
mpd |
|- ( ( ph /\ p e. A ) -> E. f ( f e. T /\ p = ( O ` ( L ` f ) ) ) ) |
| 78 |
|
df-rex |
|- ( E. f e. T p = ( O ` ( L ` f ) ) <-> E. f ( f e. T /\ p = ( O ` ( L ` f ) ) ) ) |
| 79 |
77 78
|
sylibr |
|- ( ( ph /\ p e. A ) -> E. f e. T p = ( O ` ( L ` f ) ) ) |
| 80 |
|
sseq1 |
|- ( p = ( O ` ( L ` f ) ) -> ( p C_ X <-> ( O ` ( L ` f ) ) C_ X ) ) |
| 81 |
|
sseq1 |
|- ( p = ( O ` ( L ` f ) ) -> ( p C_ Y <-> ( O ` ( L ` f ) ) C_ Y ) ) |
| 82 |
80 81
|
imbi12d |
|- ( p = ( O ` ( L ` f ) ) -> ( ( p C_ X -> p C_ Y ) <-> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) |
| 83 |
82
|
adantl |
|- ( ( ph /\ p = ( O ` ( L ` f ) ) ) -> ( ( p C_ X -> p C_ Y ) <-> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) |
| 84 |
42 79 83
|
ralxfrd |
|- ( ph -> ( A. p e. A ( p C_ X -> p C_ Y ) <-> A. f e. T ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) ) |
| 85 |
30 84
|
bitr2d |
|- ( ph -> ( A. f e. T ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) <-> X C_ Y ) ) |
| 86 |
28 85
|
sylibd |
|- ( ph -> ( { f e. C | ( O ` ( L ` f ) ) C_ X } C_ { f e. C | ( O ` ( L ` f ) ) C_ Y } -> X C_ Y ) ) |
| 87 |
|
simplr |
|- ( ( ( ph /\ X C_ Y ) /\ f e. C ) -> X C_ Y ) |
| 88 |
|
sstr |
|- ( ( ( O ` ( L ` f ) ) C_ X /\ X C_ Y ) -> ( O ` ( L ` f ) ) C_ Y ) |
| 89 |
88
|
ancoms |
|- ( ( X C_ Y /\ ( O ` ( L ` f ) ) C_ X ) -> ( O ` ( L ` f ) ) C_ Y ) |
| 90 |
89
|
a1i |
|- ( ( ( ph /\ X C_ Y ) /\ f e. C ) -> ( ( X C_ Y /\ ( O ` ( L ` f ) ) C_ X ) -> ( O ` ( L ` f ) ) C_ Y ) ) |
| 91 |
87 90
|
mpand |
|- ( ( ( ph /\ X C_ Y ) /\ f e. C ) -> ( ( O ` ( L ` f ) ) C_ X -> ( O ` ( L ` f ) ) C_ Y ) ) |
| 92 |
91
|
ss2rabdv |
|- ( ( ph /\ X C_ Y ) -> { f e. C | ( O ` ( L ` f ) ) C_ X } C_ { f e. C | ( O ` ( L ` f ) ) C_ Y } ) |
| 93 |
92
|
ex |
|- ( ph -> ( X C_ Y -> { f e. C | ( O ` ( L ` f ) ) C_ X } C_ { f e. C | ( O ` ( L ` f ) ) C_ Y } ) ) |
| 94 |
86 93
|
impbid |
|- ( ph -> ( { f e. C | ( O ` ( L ` f ) ) C_ X } C_ { f e. C | ( O ` ( L ` f ) ) C_ Y } <-> X C_ Y ) ) |
| 95 |
17 94
|
bitrd |
|- ( ph -> ( ( M ` X ) C_ ( M ` Y ) <-> X C_ Y ) ) |