Metamath Proof Explorer


Theorem mapdordlem2

Description: Lemma for mapdord . Ordering property of projectivity M . TODO: This was proved using some hacked-up older proofs. Maybe simplify; get rid of the T hypothesis. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypotheses mapdord.h H = LHyp K
mapdord.u U = DVecH K W
mapdord.s S = LSubSp U
mapdord.m M = mapd K W
mapdord.k φ K HL W H
mapdord.x φ X S
mapdord.y φ Y S
mapdord.o O = ocH K W
mapdord.a A = LSAtoms U
mapdord.f F = LFnl U
mapdord.c J = LSHyp U
mapdord.l L = LKer U
mapdord.t T = g F | O O L g J
mapdord.q C = g F | O O L g = L g
Assertion mapdordlem2 φ M X M Y X Y

Proof

Step Hyp Ref Expression
1 mapdord.h H = LHyp K
2 mapdord.u U = DVecH K W
3 mapdord.s S = LSubSp U
4 mapdord.m M = mapd K W
5 mapdord.k φ K HL W H
6 mapdord.x φ X S
7 mapdord.y φ Y S
8 mapdord.o O = ocH K W
9 mapdord.a A = LSAtoms U
10 mapdord.f F = LFnl U
11 mapdord.c J = LSHyp U
12 mapdord.l L = LKer U
13 mapdord.t T = g F | O O L g J
14 mapdord.q C = g F | O O L g = L g
15 1 2 3 10 12 8 4 5 6 14 mapdvalc φ M X = f C | O L f X
16 1 2 3 10 12 8 4 5 7 14 mapdvalc φ M Y = f C | O L f Y
17 15 16 sseq12d φ M X M Y f C | O L f X f C | O L f Y
18 ss2rab f C | O L f X f C | O L f Y f C O L f X O L f Y
19 eqid Base U = Base U
20 1 8 2 19 11 10 12 13 14 5 mapdordlem1a φ f T f C O O L f J
21 simprl φ f C O O L f J f C
22 idd φ f C O O L f J O L f X O L f Y O L f X O L f Y
23 21 22 embantd φ f C O O L f J f C O L f X O L f Y O L f X O L f Y
24 23 ex φ f C O O L f J f C O L f X O L f Y O L f X O L f Y
25 20 24 sylbid φ f T f C O L f X O L f Y O L f X O L f Y
26 25 com23 φ f C O L f X O L f Y f T O L f X O L f Y
27 26 ralimdv2 φ f C O L f X O L f Y f T O L f X O L f Y
28 18 27 syl5bi φ f C | O L f X f C | O L f Y f T O L f X O L f Y
29 1 2 5 dvhlmod φ U LMod
30 3 9 29 6 7 lssatle φ X Y p A p X p Y
31 13 mapdordlem1 f T f F O O L f J
32 31 simprbi f T O O L f J
33 32 adantl φ f T O O L f J
34 5 adantr φ f T K HL W H
35 31 simplbi f T f F
36 35 adantl φ f T f F
37 1 8 2 10 11 12 34 36 dochlkr φ f T O O L f J O O L f = L f L f J
38 33 37 mpbid φ f T O O L f = L f L f J
39 38 simpld φ f T O O L f = L f
40 38 simprd φ f T L f J
41 1 8 2 9 11 34 40 dochshpsat φ f T O O L f = L f O L f A
42 39 41 mpbid φ f T O L f A
43 1 2 5 dvhlvec φ U LVec
44 43 adantr φ p A U LVec
45 5 adantr φ p A K HL W H
46 simpr φ p A p A
47 1 2 8 9 11 45 46 dochsatshp φ p A O p J
48 11 10 12 lshpkrex U LVec O p J f F L f = O p
49 44 47 48 syl2anc φ p A f F L f = O p
50 df-rex f F L f = O p f f F L f = O p
51 49 50 sylib φ p A f f F L f = O p
52 simprl φ p A f F L f = O p f F
53 simprr φ p A f F L f = O p L f = O p
54 53 fveq2d φ p A f F L f = O p O L f = O O p
55 54 fveq2d φ p A f F L f = O p O O L f = O O O p
56 29 adantr φ p A U LMod
57 19 9 56 46 lsatssv φ p A p Base U
58 eqid DIsoH K W = DIsoH K W
59 1 58 2 19 8 dochcl K HL W H p Base U O p ran DIsoH K W
60 45 57 59 syl2anc φ p A O p ran DIsoH K W
61 1 58 8 dochoc K HL W H O p ran DIsoH K W O O O p = O p
62 45 60 61 syl2anc φ p A O O O p = O p
63 62 adantr φ p A f F L f = O p O O O p = O p
64 55 63 eqtrd φ p A f F L f = O p O O L f = O p
65 47 adantr φ p A f F L f = O p O p J
66 64 65 eqeltrd φ p A f F L f = O p O O L f J
67 52 66 31 sylanbrc φ p A f F L f = O p f T
68 1 2 58 9 dih1dimat K HL W H p A p ran DIsoH K W
69 45 46 68 syl2anc φ p A p ran DIsoH K W
70 1 58 8 dochoc K HL W H p ran DIsoH K W O O p = p
71 45 69 70 syl2anc φ p A O O p = p
72 71 adantr φ p A f F L f = O p O O p = p
73 54 72 eqtr2d φ p A f F L f = O p p = O L f
74 67 73 jca φ p A f F L f = O p f T p = O L f
75 74 ex φ p A f F L f = O p f T p = O L f
76 75 eximdv φ p A f f F L f = O p f f T p = O L f
77 51 76 mpd φ p A f f T p = O L f
78 df-rex f T p = O L f f f T p = O L f
79 77 78 sylibr φ p A f T p = O L f
80 sseq1 p = O L f p X O L f X
81 sseq1 p = O L f p Y O L f Y
82 80 81 imbi12d p = O L f p X p Y O L f X O L f Y
83 82 adantl φ p = O L f p X p Y O L f X O L f Y
84 42 79 83 ralxfrd φ p A p X p Y f T O L f X O L f Y
85 30 84 bitr2d φ f T O L f X O L f Y X Y
86 28 85 sylibd φ f C | O L f X f C | O L f Y X Y
87 simplr φ X Y f C X Y
88 sstr O L f X X Y O L f Y
89 88 ancoms X Y O L f X O L f Y
90 89 a1i φ X Y f C X Y O L f X O L f Y
91 87 90 mpand φ X Y f C O L f X O L f Y
92 91 ss2rabdv φ X Y f C | O L f X f C | O L f Y
93 92 ex φ X Y f C | O L f X f C | O L f Y
94 86 93 impbid φ f C | O L f X f C | O L f Y X Y
95 17 94 bitrd φ M X M Y X Y