| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdord.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapdord.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapdord.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
| 4 |
|
mapdord.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
mapdord.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 6 |
|
mapdord.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 7 |
|
mapdord.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
| 8 |
|
mapdord.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
mapdord.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 10 |
|
mapdord.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 11 |
|
mapdord.c |
⊢ 𝐽 = ( LSHyp ‘ 𝑈 ) |
| 12 |
|
mapdord.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 13 |
|
mapdord.t |
⊢ 𝑇 = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) ∈ 𝐽 } |
| 14 |
|
mapdord.q |
⊢ 𝐶 = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } |
| 15 |
1 2 3 10 12 8 4 5 6 14
|
mapdvalc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ) |
| 16 |
1 2 3 10 12 8 4 5 7 14
|
mapdvalc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) = { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } ) |
| 17 |
15 16
|
sseq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ↔ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ⊆ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } ) ) |
| 18 |
|
ss2rab |
⊢ ( { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ⊆ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } ↔ ∀ 𝑓 ∈ 𝐶 ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) |
| 19 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 20 |
1 8 2 19 11 10 12 13 14 5
|
mapdordlem1a |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑇 ↔ ( 𝑓 ∈ 𝐶 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) ) ) |
| 21 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐶 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) ) → 𝑓 ∈ 𝐶 ) |
| 22 |
|
idd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐶 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) ) → ( ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) |
| 23 |
21 22
|
embantd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐶 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) ) → ( ( 𝑓 ∈ 𝐶 → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) |
| 24 |
23
|
ex |
⊢ ( 𝜑 → ( ( 𝑓 ∈ 𝐶 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) → ( ( 𝑓 ∈ 𝐶 → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) ) |
| 25 |
20 24
|
sylbid |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑇 → ( ( 𝑓 ∈ 𝐶 → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) ) |
| 26 |
25
|
com23 |
⊢ ( 𝜑 → ( ( 𝑓 ∈ 𝐶 → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) → ( 𝑓 ∈ 𝑇 → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) ) |
| 27 |
26
|
ralimdv2 |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ 𝐶 ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) → ∀ 𝑓 ∈ 𝑇 ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) |
| 28 |
18 27
|
biimtrid |
⊢ ( 𝜑 → ( { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ⊆ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } → ∀ 𝑓 ∈ 𝑇 ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) |
| 29 |
1 2 5
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 30 |
3 9 29 6 7
|
lssatle |
⊢ ( 𝜑 → ( 𝑋 ⊆ 𝑌 ↔ ∀ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑋 → 𝑝 ⊆ 𝑌 ) ) ) |
| 31 |
13
|
mapdordlem1 |
⊢ ( 𝑓 ∈ 𝑇 ↔ ( 𝑓 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) ) |
| 32 |
31
|
simprbi |
⊢ ( 𝑓 ∈ 𝑇 → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) |
| 34 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 35 |
31
|
simplbi |
⊢ ( 𝑓 ∈ 𝑇 → 𝑓 ∈ 𝐹 ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑓 ∈ 𝐹 ) |
| 37 |
1 8 2 10 11 12 34 36
|
dochlkr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ↔ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝐿 ‘ 𝑓 ) ∈ 𝐽 ) ) ) |
| 38 |
33 37
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝐿 ‘ 𝑓 ) ∈ 𝐽 ) ) |
| 39 |
38
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ) |
| 40 |
38
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( 𝐿 ‘ 𝑓 ) ∈ 𝐽 ) |
| 41 |
1 8 2 9 11 34 40
|
dochshpsat |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ↔ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ∈ 𝐴 ) ) |
| 42 |
39 41
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ∈ 𝐴 ) |
| 43 |
1 2 5
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑈 ∈ LVec ) |
| 45 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ 𝐴 ) |
| 47 |
1 2 8 9 11 45 46
|
dochsatshp |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑂 ‘ 𝑝 ) ∈ 𝐽 ) |
| 48 |
11 10 12
|
lshpkrex |
⊢ ( ( 𝑈 ∈ LVec ∧ ( 𝑂 ‘ 𝑝 ) ∈ 𝐽 ) → ∃ 𝑓 ∈ 𝐹 ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) |
| 49 |
44 47 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ∃ 𝑓 ∈ 𝐹 ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) |
| 50 |
|
df-rex |
⊢ ( ∃ 𝑓 ∈ 𝐹 ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ↔ ∃ 𝑓 ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) |
| 51 |
49 50
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) |
| 52 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → 𝑓 ∈ 𝐹 ) |
| 53 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) |
| 54 |
53
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) ) |
| 55 |
54
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝑂 ‘ ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) ) ) |
| 56 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑈 ∈ LMod ) |
| 57 |
19 9 56 46
|
lsatssv |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ⊆ ( Base ‘ 𝑈 ) ) |
| 58 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 59 |
1 58 2 19 8
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ⊆ ( Base ‘ 𝑈 ) ) → ( 𝑂 ‘ 𝑝 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 60 |
45 57 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑂 ‘ 𝑝 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 61 |
1 58 8
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑂 ‘ 𝑝 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) ) = ( 𝑂 ‘ 𝑝 ) ) |
| 62 |
45 60 61
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) ) = ( 𝑂 ‘ 𝑝 ) ) |
| 63 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) ) = ( 𝑂 ‘ 𝑝 ) ) |
| 64 |
55 63
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝑂 ‘ 𝑝 ) ) |
| 65 |
47
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑂 ‘ 𝑝 ) ∈ 𝐽 ) |
| 66 |
64 65
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) |
| 67 |
52 66 31
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → 𝑓 ∈ 𝑇 ) |
| 68 |
1 2 58 9
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 69 |
45 46 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 70 |
1 58 8
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) = 𝑝 ) |
| 71 |
45 69 70
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) = 𝑝 ) |
| 72 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) = 𝑝 ) |
| 73 |
54 72
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
| 74 |
67 73
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑓 ∈ 𝑇 ∧ 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) |
| 75 |
74
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) → ( 𝑓 ∈ 𝑇 ∧ 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) ) |
| 76 |
75
|
eximdv |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( ∃ 𝑓 ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) → ∃ 𝑓 ( 𝑓 ∈ 𝑇 ∧ 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) ) |
| 77 |
51 76
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 ∈ 𝑇 ∧ 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) |
| 78 |
|
df-rex |
⊢ ( ∃ 𝑓 ∈ 𝑇 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ↔ ∃ 𝑓 ( 𝑓 ∈ 𝑇 ∧ 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) |
| 79 |
77 78
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ∃ 𝑓 ∈ 𝑇 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
| 80 |
|
sseq1 |
⊢ ( 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) → ( 𝑝 ⊆ 𝑋 ↔ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 ) ) |
| 81 |
|
sseq1 |
⊢ ( 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) → ( 𝑝 ⊆ 𝑌 ↔ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) |
| 82 |
80 81
|
imbi12d |
⊢ ( 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) → ( ( 𝑝 ⊆ 𝑋 → 𝑝 ⊆ 𝑌 ) ↔ ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) |
| 83 |
82
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) → ( ( 𝑝 ⊆ 𝑋 → 𝑝 ⊆ 𝑌 ) ↔ ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) |
| 84 |
42 79 83
|
ralxfrd |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑋 → 𝑝 ⊆ 𝑌 ) ↔ ∀ 𝑓 ∈ 𝑇 ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) |
| 85 |
30 84
|
bitr2d |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ 𝑇 ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ↔ 𝑋 ⊆ 𝑌 ) ) |
| 86 |
28 85
|
sylibd |
⊢ ( 𝜑 → ( { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ⊆ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } → 𝑋 ⊆ 𝑌 ) ) |
| 87 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ⊆ 𝑌 ) ∧ 𝑓 ∈ 𝐶 ) → 𝑋 ⊆ 𝑌 ) |
| 88 |
|
sstr |
⊢ ( ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑌 ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) |
| 89 |
88
|
ancoms |
⊢ ( ( 𝑋 ⊆ 𝑌 ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) |
| 90 |
89
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑋 ⊆ 𝑌 ) ∧ 𝑓 ∈ 𝐶 ) → ( ( 𝑋 ⊆ 𝑌 ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) |
| 91 |
87 90
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑋 ⊆ 𝑌 ) ∧ 𝑓 ∈ 𝐶 ) → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) |
| 92 |
91
|
ss2rabdv |
⊢ ( ( 𝜑 ∧ 𝑋 ⊆ 𝑌 ) → { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ⊆ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } ) |
| 93 |
92
|
ex |
⊢ ( 𝜑 → ( 𝑋 ⊆ 𝑌 → { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ⊆ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } ) ) |
| 94 |
86 93
|
impbid |
⊢ ( 𝜑 → ( { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ⊆ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } ↔ 𝑋 ⊆ 𝑌 ) ) |
| 95 |
17 94
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ↔ 𝑋 ⊆ 𝑌 ) ) |