Step |
Hyp |
Ref |
Expression |
1 |
|
mapdord.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdord.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdord.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
4 |
|
mapdord.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
mapdord.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
mapdord.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
7 |
|
mapdord.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
8 |
|
mapdord.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
mapdord.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
10 |
|
mapdord.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
11 |
|
mapdord.c |
⊢ 𝐽 = ( LSHyp ‘ 𝑈 ) |
12 |
|
mapdord.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
13 |
|
mapdord.t |
⊢ 𝑇 = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) ∈ 𝐽 } |
14 |
|
mapdord.q |
⊢ 𝐶 = { 𝑔 ∈ 𝐹 ∣ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑔 ) ) ) = ( 𝐿 ‘ 𝑔 ) } |
15 |
1 2 3 10 12 8 4 5 6 14
|
mapdvalc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ) |
16 |
1 2 3 10 12 8 4 5 7 14
|
mapdvalc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) = { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } ) |
17 |
15 16
|
sseq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ↔ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ⊆ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } ) ) |
18 |
|
ss2rab |
⊢ ( { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ⊆ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } ↔ ∀ 𝑓 ∈ 𝐶 ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
20 |
1 8 2 19 11 10 12 13 14 5
|
mapdordlem1a |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑇 ↔ ( 𝑓 ∈ 𝐶 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) ) ) |
21 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐶 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) ) → 𝑓 ∈ 𝐶 ) |
22 |
|
idd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐶 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) ) → ( ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) |
23 |
21 22
|
embantd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐶 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) ) → ( ( 𝑓 ∈ 𝐶 → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) |
24 |
23
|
ex |
⊢ ( 𝜑 → ( ( 𝑓 ∈ 𝐶 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) → ( ( 𝑓 ∈ 𝐶 → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) ) |
25 |
20 24
|
sylbid |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑇 → ( ( 𝑓 ∈ 𝐶 → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) ) |
26 |
25
|
com23 |
⊢ ( 𝜑 → ( ( 𝑓 ∈ 𝐶 → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) → ( 𝑓 ∈ 𝑇 → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) ) |
27 |
26
|
ralimdv2 |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ 𝐶 ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) → ∀ 𝑓 ∈ 𝑇 ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) |
28 |
18 27
|
syl5bi |
⊢ ( 𝜑 → ( { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ⊆ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } → ∀ 𝑓 ∈ 𝑇 ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) |
29 |
1 2 5
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
30 |
3 9 29 6 7
|
lssatle |
⊢ ( 𝜑 → ( 𝑋 ⊆ 𝑌 ↔ ∀ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑋 → 𝑝 ⊆ 𝑌 ) ) ) |
31 |
13
|
mapdordlem1 |
⊢ ( 𝑓 ∈ 𝑇 ↔ ( 𝑓 ∈ 𝐹 ∧ ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) ) |
32 |
31
|
simprbi |
⊢ ( 𝑓 ∈ 𝑇 → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) |
33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) |
34 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
35 |
31
|
simplbi |
⊢ ( 𝑓 ∈ 𝑇 → 𝑓 ∈ 𝐹 ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → 𝑓 ∈ 𝐹 ) |
37 |
1 8 2 10 11 12 34 36
|
dochlkr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ↔ ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝐿 ‘ 𝑓 ) ∈ 𝐽 ) ) ) |
38 |
33 37
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ∧ ( 𝐿 ‘ 𝑓 ) ∈ 𝐽 ) ) |
39 |
38
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ) |
40 |
38
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( 𝐿 ‘ 𝑓 ) ∈ 𝐽 ) |
41 |
1 8 2 9 11 34 40
|
dochshpsat |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝐿 ‘ 𝑓 ) ↔ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ∈ 𝐴 ) ) |
42 |
39 41
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ∈ 𝐴 ) |
43 |
1 2 5
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑈 ∈ LVec ) |
45 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ 𝐴 ) |
47 |
1 2 8 9 11 45 46
|
dochsatshp |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑂 ‘ 𝑝 ) ∈ 𝐽 ) |
48 |
11 10 12
|
lshpkrex |
⊢ ( ( 𝑈 ∈ LVec ∧ ( 𝑂 ‘ 𝑝 ) ∈ 𝐽 ) → ∃ 𝑓 ∈ 𝐹 ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) |
49 |
44 47 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ∃ 𝑓 ∈ 𝐹 ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) |
50 |
|
df-rex |
⊢ ( ∃ 𝑓 ∈ 𝐹 ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ↔ ∃ 𝑓 ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) |
51 |
49 50
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) |
52 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → 𝑓 ∈ 𝐹 ) |
53 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) |
54 |
53
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) = ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) ) |
55 |
54
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝑂 ‘ ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) ) ) |
56 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑈 ∈ LMod ) |
57 |
19 9 56 46
|
lsatssv |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ⊆ ( Base ‘ 𝑈 ) ) |
58 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
59 |
1 58 2 19 8
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ⊆ ( Base ‘ 𝑈 ) ) → ( 𝑂 ‘ 𝑝 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
60 |
45 57 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑂 ‘ 𝑝 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
61 |
1 58 8
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑂 ‘ 𝑝 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) ) = ( 𝑂 ‘ 𝑝 ) ) |
62 |
45 60 61
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) ) = ( 𝑂 ‘ 𝑝 ) ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) ) = ( 𝑂 ‘ 𝑝 ) ) |
64 |
55 63
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) = ( 𝑂 ‘ 𝑝 ) ) |
65 |
47
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑂 ‘ 𝑝 ) ∈ 𝐽 ) |
66 |
64 65
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ∈ 𝐽 ) |
67 |
52 66 31
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → 𝑓 ∈ 𝑇 ) |
68 |
1 2 58 9
|
dih1dimat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
69 |
45 46 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
70 |
1 58 8
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) = 𝑝 ) |
71 |
45 69 70
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) = 𝑝 ) |
72 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑂 ‘ ( 𝑂 ‘ 𝑝 ) ) = 𝑝 ) |
73 |
54 72
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
74 |
67 73
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) ) → ( 𝑓 ∈ 𝑇 ∧ 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) |
75 |
74
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) → ( 𝑓 ∈ 𝑇 ∧ 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) ) |
76 |
75
|
eximdv |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ( ∃ 𝑓 ( 𝑓 ∈ 𝐹 ∧ ( 𝐿 ‘ 𝑓 ) = ( 𝑂 ‘ 𝑝 ) ) → ∃ 𝑓 ( 𝑓 ∈ 𝑇 ∧ 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) ) |
77 |
51 76
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 ∈ 𝑇 ∧ 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) |
78 |
|
df-rex |
⊢ ( ∃ 𝑓 ∈ 𝑇 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ↔ ∃ 𝑓 ( 𝑓 ∈ 𝑇 ∧ 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) |
79 |
77 78
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐴 ) → ∃ 𝑓 ∈ 𝑇 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) |
80 |
|
sseq1 |
⊢ ( 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) → ( 𝑝 ⊆ 𝑋 ↔ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 ) ) |
81 |
|
sseq1 |
⊢ ( 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) → ( 𝑝 ⊆ 𝑌 ↔ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) |
82 |
80 81
|
imbi12d |
⊢ ( 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) → ( ( 𝑝 ⊆ 𝑋 → 𝑝 ⊆ 𝑌 ) ↔ ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) |
83 |
82
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 = ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ) → ( ( 𝑝 ⊆ 𝑋 → 𝑝 ⊆ 𝑌 ) ↔ ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) |
84 |
42 79 83
|
ralxfrd |
⊢ ( 𝜑 → ( ∀ 𝑝 ∈ 𝐴 ( 𝑝 ⊆ 𝑋 → 𝑝 ⊆ 𝑌 ) ↔ ∀ 𝑓 ∈ 𝑇 ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) ) |
85 |
30 84
|
bitr2d |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ 𝑇 ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ↔ 𝑋 ⊆ 𝑌 ) ) |
86 |
28 85
|
sylibd |
⊢ ( 𝜑 → ( { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ⊆ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } → 𝑋 ⊆ 𝑌 ) ) |
87 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ⊆ 𝑌 ) ∧ 𝑓 ∈ 𝐶 ) → 𝑋 ⊆ 𝑌 ) |
88 |
|
sstr |
⊢ ( ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑌 ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) |
89 |
88
|
ancoms |
⊢ ( ( 𝑋 ⊆ 𝑌 ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) |
90 |
89
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑋 ⊆ 𝑌 ) ∧ 𝑓 ∈ 𝐶 ) → ( ( 𝑋 ⊆ 𝑌 ∧ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 ) → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) |
91 |
87 90
|
mpand |
⊢ ( ( ( 𝜑 ∧ 𝑋 ⊆ 𝑌 ) ∧ 𝑓 ∈ 𝐶 ) → ( ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 → ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 ) ) |
92 |
91
|
ss2rabdv |
⊢ ( ( 𝜑 ∧ 𝑋 ⊆ 𝑌 ) → { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ⊆ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } ) |
93 |
92
|
ex |
⊢ ( 𝜑 → ( 𝑋 ⊆ 𝑌 → { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ⊆ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } ) ) |
94 |
86 93
|
impbid |
⊢ ( 𝜑 → ( { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑋 } ⊆ { 𝑓 ∈ 𝐶 ∣ ( 𝑂 ‘ ( 𝐿 ‘ 𝑓 ) ) ⊆ 𝑌 } ↔ 𝑋 ⊆ 𝑌 ) ) |
95 |
17 94
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ↔ 𝑋 ⊆ 𝑌 ) ) |