| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochshpsat.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochshpsat.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochshpsat.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dochshpsat.a |
⊢ 𝐴 = ( LSAtoms ‘ 𝑈 ) |
| 5 |
|
dochshpsat.y |
⊢ 𝑌 = ( LSHyp ‘ 𝑈 ) |
| 6 |
|
dochshpsat.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 7 |
|
dochshpsat.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑌 ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 9 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → 𝑋 ∈ 𝑌 ) |
| 10 |
8 9
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ 𝑌 ) |
| 11 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 12 |
1 3 6
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 13 |
11 5 12 7
|
lshplss |
⊢ ( 𝜑 → 𝑋 ∈ ( LSubSp ‘ 𝑈 ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 15 |
14 11
|
lssss |
⊢ ( 𝑋 ∈ ( LSubSp ‘ 𝑈 ) → 𝑋 ⊆ ( Base ‘ 𝑈 ) ) |
| 16 |
13 15
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ ( Base ‘ 𝑈 ) ) |
| 17 |
1 3 14 11 2
|
dochlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 18 |
6 16 17
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 19 |
1 2 3 11 4 5 6 18
|
dochsatshpb |
⊢ ( 𝜑 → ( ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ 𝑌 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ 𝑌 ) ) |
| 21 |
10 20
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) |
| 22 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
| 23 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) → 𝑈 ∈ LMod ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) |
| 25 |
22 4 23 24
|
lsatn0 |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ≠ { ( 0g ‘ 𝑈 ) } ) |
| 26 |
25
|
neneqd |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) → ¬ ( ⊥ ‘ 𝑋 ) = { ( 0g ‘ 𝑈 ) } ) |
| 27 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 28 |
1 3 2 14 22
|
doch0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) = ( Base ‘ 𝑈 ) ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) → ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) = ( Base ‘ 𝑈 ) ) |
| 30 |
29
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( Base ‘ 𝑈 ) ) ) |
| 31 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 32 |
1 31 3 14 2
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 33 |
6 16 32
|
syl2anc |
⊢ ( 𝜑 → ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 34 |
1 31 3 22
|
dih0rn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → { ( 0g ‘ 𝑈 ) } ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 35 |
6 34
|
syl |
⊢ ( 𝜑 → { ( 0g ‘ 𝑈 ) } ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 36 |
1 31 2 6 33 35
|
doch11 |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ↔ ( ⊥ ‘ 𝑋 ) = { ( 0g ‘ 𝑈 ) } ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( ⊥ ‘ { ( 0g ‘ 𝑈 ) } ) ↔ ( ⊥ ‘ 𝑋 ) = { ( 0g ‘ 𝑈 ) } ) ) |
| 38 |
30 37
|
bitr3d |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( Base ‘ 𝑈 ) ↔ ( ⊥ ‘ 𝑋 ) = { ( 0g ‘ 𝑈 ) } ) ) |
| 39 |
26 38
|
mtbird |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) → ¬ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( Base ‘ 𝑈 ) ) |
| 40 |
1 2 3 14 5 6 7
|
dochshpncl |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ≠ 𝑋 ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( Base ‘ 𝑈 ) ) ) |
| 41 |
40
|
necon1bbid |
⊢ ( 𝜑 → ( ¬ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( Base ‘ 𝑈 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) → ( ¬ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = ( Base ‘ 𝑈 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) ) |
| 43 |
39 42
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ) |
| 44 |
21 43
|
impbida |
⊢ ( 𝜑 → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) = 𝑋 ↔ ( ⊥ ‘ 𝑋 ) ∈ 𝐴 ) ) |