Metamath Proof Explorer


Theorem dochshpsat

Description: A hyperplane is closed iff its orthocomplement is an atom. (Contributed by NM, 29-Oct-2014)

Ref Expression
Hypotheses dochshpsat.h 𝐻 = ( LHyp ‘ 𝐾 )
dochshpsat.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
dochshpsat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dochshpsat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
dochshpsat.y 𝑌 = ( LSHyp ‘ 𝑈 )
dochshpsat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dochshpsat.x ( 𝜑𝑋𝑌 )
Assertion dochshpsat ( 𝜑 → ( ( ‘ ( 𝑋 ) ) = 𝑋 ↔ ( 𝑋 ) ∈ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 dochshpsat.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dochshpsat.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 dochshpsat.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dochshpsat.a 𝐴 = ( LSAtoms ‘ 𝑈 )
5 dochshpsat.y 𝑌 = ( LSHyp ‘ 𝑈 )
6 dochshpsat.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 dochshpsat.x ( 𝜑𝑋𝑌 )
8 simpr ( ( 𝜑 ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ) → ( ‘ ( 𝑋 ) ) = 𝑋 )
9 7 adantr ( ( 𝜑 ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ) → 𝑋𝑌 )
10 8 9 eqeltrd ( ( 𝜑 ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ) → ( ‘ ( 𝑋 ) ) ∈ 𝑌 )
11 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
12 1 3 6 dvhlmod ( 𝜑𝑈 ∈ LMod )
13 11 5 12 7 lshplss ( 𝜑𝑋 ∈ ( LSubSp ‘ 𝑈 ) )
14 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
15 14 11 lssss ( 𝑋 ∈ ( LSubSp ‘ 𝑈 ) → 𝑋 ⊆ ( Base ‘ 𝑈 ) )
16 13 15 syl ( 𝜑𝑋 ⊆ ( Base ‘ 𝑈 ) )
17 1 3 14 11 2 dochlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑈 ) ) → ( 𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) )
18 6 16 17 syl2anc ( 𝜑 → ( 𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) )
19 1 2 3 11 4 5 6 18 dochsatshpb ( 𝜑 → ( ( 𝑋 ) ∈ 𝐴 ↔ ( ‘ ( 𝑋 ) ) ∈ 𝑌 ) )
20 19 adantr ( ( 𝜑 ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ) → ( ( 𝑋 ) ∈ 𝐴 ↔ ( ‘ ( 𝑋 ) ) ∈ 𝑌 ) )
21 10 20 mpbird ( ( 𝜑 ∧ ( ‘ ( 𝑋 ) ) = 𝑋 ) → ( 𝑋 ) ∈ 𝐴 )
22 eqid ( 0g𝑈 ) = ( 0g𝑈 )
23 12 adantr ( ( 𝜑 ∧ ( 𝑋 ) ∈ 𝐴 ) → 𝑈 ∈ LMod )
24 simpr ( ( 𝜑 ∧ ( 𝑋 ) ∈ 𝐴 ) → ( 𝑋 ) ∈ 𝐴 )
25 22 4 23 24 lsatn0 ( ( 𝜑 ∧ ( 𝑋 ) ∈ 𝐴 ) → ( 𝑋 ) ≠ { ( 0g𝑈 ) } )
26 25 neneqd ( ( 𝜑 ∧ ( 𝑋 ) ∈ 𝐴 ) → ¬ ( 𝑋 ) = { ( 0g𝑈 ) } )
27 6 adantr ( ( 𝜑 ∧ ( 𝑋 ) ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
28 1 3 2 14 22 doch0 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ‘ { ( 0g𝑈 ) } ) = ( Base ‘ 𝑈 ) )
29 27 28 syl ( ( 𝜑 ∧ ( 𝑋 ) ∈ 𝐴 ) → ( ‘ { ( 0g𝑈 ) } ) = ( Base ‘ 𝑈 ) )
30 29 eqeq2d ( ( 𝜑 ∧ ( 𝑋 ) ∈ 𝐴 ) → ( ( ‘ ( 𝑋 ) ) = ( ‘ { ( 0g𝑈 ) } ) ↔ ( ‘ ( 𝑋 ) ) = ( Base ‘ 𝑈 ) ) )
31 eqid ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
32 1 31 3 14 2 dochcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑈 ) ) → ( 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
33 6 16 32 syl2anc ( 𝜑 → ( 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
34 1 31 3 22 dih0rn ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → { ( 0g𝑈 ) } ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
35 6 34 syl ( 𝜑 → { ( 0g𝑈 ) } ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) )
36 1 31 2 6 33 35 doch11 ( 𝜑 → ( ( ‘ ( 𝑋 ) ) = ( ‘ { ( 0g𝑈 ) } ) ↔ ( 𝑋 ) = { ( 0g𝑈 ) } ) )
37 36 adantr ( ( 𝜑 ∧ ( 𝑋 ) ∈ 𝐴 ) → ( ( ‘ ( 𝑋 ) ) = ( ‘ { ( 0g𝑈 ) } ) ↔ ( 𝑋 ) = { ( 0g𝑈 ) } ) )
38 30 37 bitr3d ( ( 𝜑 ∧ ( 𝑋 ) ∈ 𝐴 ) → ( ( ‘ ( 𝑋 ) ) = ( Base ‘ 𝑈 ) ↔ ( 𝑋 ) = { ( 0g𝑈 ) } ) )
39 26 38 mtbird ( ( 𝜑 ∧ ( 𝑋 ) ∈ 𝐴 ) → ¬ ( ‘ ( 𝑋 ) ) = ( Base ‘ 𝑈 ) )
40 1 2 3 14 5 6 7 dochshpncl ( 𝜑 → ( ( ‘ ( 𝑋 ) ) ≠ 𝑋 ↔ ( ‘ ( 𝑋 ) ) = ( Base ‘ 𝑈 ) ) )
41 40 necon1bbid ( 𝜑 → ( ¬ ( ‘ ( 𝑋 ) ) = ( Base ‘ 𝑈 ) ↔ ( ‘ ( 𝑋 ) ) = 𝑋 ) )
42 41 adantr ( ( 𝜑 ∧ ( 𝑋 ) ∈ 𝐴 ) → ( ¬ ( ‘ ( 𝑋 ) ) = ( Base ‘ 𝑈 ) ↔ ( ‘ ( 𝑋 ) ) = 𝑋 ) )
43 39 42 mpbid ( ( 𝜑 ∧ ( 𝑋 ) ∈ 𝐴 ) → ( ‘ ( 𝑋 ) ) = 𝑋 )
44 21 43 impbida ( 𝜑 → ( ( ‘ ( 𝑋 ) ) = 𝑋 ↔ ( 𝑋 ) ∈ 𝐴 ) )