Description: Lemma for mapdord . (Contributed by NM, 27-Jan-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mapdordlem1b.c | |- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
|
Assertion | mapdordlem1bN | |- ( J e. C <-> ( J e. F /\ ( O ` ( O ` ( L ` J ) ) ) = ( L ` J ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdordlem1b.c | |- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) } |
|
2 | 1 | lcfl1lem | |- ( J e. C <-> ( J e. F /\ ( O ` ( O ` ( L ` J ) ) ) = ( L ` J ) ) ) |