Metamath Proof Explorer


Theorem mapdordlem1bN

Description: Lemma for mapdord . (Contributed by NM, 27-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypothesis mapdordlem1b.c
|- C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) }
Assertion mapdordlem1bN
|- ( J e. C <-> ( J e. F /\ ( O ` ( O ` ( L ` J ) ) ) = ( L ` J ) ) )

Proof

Step Hyp Ref Expression
1 mapdordlem1b.c
 |-  C = { g e. F | ( O ` ( O ` ( L ` g ) ) ) = ( L ` g ) }
2 1 lcfl1lem
 |-  ( J e. C <-> ( J e. F /\ ( O ` ( O ` ( L ` J ) ) ) = ( L ` J ) ) )