Metamath Proof Explorer


Theorem mapdordlem1bN

Description: Lemma for mapdord . (Contributed by NM, 27-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypothesis mapdordlem1b.c C=gF|OOLg=Lg
Assertion mapdordlem1bN JCJFOOLJ=LJ

Proof

Step Hyp Ref Expression
1 mapdordlem1b.c C=gF|OOLg=Lg
2 1 lcfl1lem JCJFOOLJ=LJ