Metamath Proof Explorer


Theorem mapdordlem1bN

Description: Lemma for mapdord . (Contributed by NM, 27-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypothesis mapdordlem1b.c C = g F | O O L g = L g
Assertion mapdordlem1bN J C J F O O L J = L J

Proof

Step Hyp Ref Expression
1 mapdordlem1b.c C = g F | O O L g = L g
2 1 lcfl1lem J C J F O O L J = L J