Metamath Proof Explorer


Theorem lcfls1N

Description: Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcfls1.c
|- C = { f e. F | ( ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) /\ ( ._|_ ` ( L ` f ) ) C_ Q ) }
lcfls1.g
|- ( ph -> G e. F )
Assertion lcfls1N
|- ( ph -> ( G e. C <-> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) )

Proof

Step Hyp Ref Expression
1 lcfls1.c
 |-  C = { f e. F | ( ( ._|_ ` ( ._|_ ` ( L ` f ) ) ) = ( L ` f ) /\ ( ._|_ ` ( L ` f ) ) C_ Q ) }
2 lcfls1.g
 |-  ( ph -> G e. F )
3 1 lcfls1lem
 |-  ( G e. C <-> ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) )
4 3anass
 |-  ( ( G e. F /\ ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) <-> ( G e. F /\ ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) )
5 3 4 bitri
 |-  ( G e. C <-> ( G e. F /\ ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) )
6 2 biantrurd
 |-  ( ph -> ( ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) <-> ( G e. F /\ ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) ) )
7 5 6 bitr4id
 |-  ( ph -> ( G e. C <-> ( ( ._|_ ` ( ._|_ ` ( L ` G ) ) ) = ( L ` G ) /\ ( ._|_ ` ( L ` G ) ) C_ Q ) ) )