| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcfrvalsn.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lcfrvalsn.o | ⊢  ⊥   =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lcfrvalsn.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | lcfrvalsn.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 5 |  | lcfrvalsn.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 6 |  | lcfrvalsn.d | ⊢ 𝐷  =  ( LDual ‘ 𝑈 ) | 
						
							| 7 |  | lcfrvalsn.n | ⊢ 𝑁  =  ( LSpan ‘ 𝐷 ) | 
						
							| 8 |  | lcfrvalsn.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | lcfrvalsn.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 10 |  | lcfrvalsn.q | ⊢ 𝑄  =  ∪  𝑓  ∈  𝑅 (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) | 
						
							| 11 |  | lcfrvalsn.r | ⊢ 𝑅  =  ( 𝑁 ‘ { 𝐺 } ) | 
						
							| 12 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑓  ∈  𝑅 (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  ↔  ∃ 𝑓  ∈  𝑅 𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) ) | 
						
							| 13 | 11 | eleq2i | ⊢ ( 𝑓  ∈  𝑅  ↔  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) ) | 
						
							| 14 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 16 | 1 3 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) )  →  𝑈  ∈  LMod ) | 
						
							| 18 | 6 16 | lduallmod | ⊢ ( 𝜑  →  𝐷  ∈  LMod ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝐷 )  =  ( Base ‘ 𝐷 ) | 
						
							| 20 | 4 6 19 16 9 | ldualelvbase | ⊢ ( 𝜑  →  𝐺  ∈  ( Base ‘ 𝐷 ) ) | 
						
							| 21 |  | eqid | ⊢ ( LSubSp ‘ 𝐷 )  =  ( LSubSp ‘ 𝐷 ) | 
						
							| 22 | 19 21 7 | lspsncl | ⊢ ( ( 𝐷  ∈  LMod  ∧  𝐺  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝑁 ‘ { 𝐺 } )  ∈  ( LSubSp ‘ 𝐷 ) ) | 
						
							| 23 | 18 20 22 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝐺 } )  ∈  ( LSubSp ‘ 𝐷 ) ) | 
						
							| 24 | 19 21 | lssel | ⊢ ( ( ( 𝑁 ‘ { 𝐺 } )  ∈  ( LSubSp ‘ 𝐷 )  ∧  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) )  →  𝑓  ∈  ( Base ‘ 𝐷 ) ) | 
						
							| 25 | 23 24 | sylan | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) )  →  𝑓  ∈  ( Base ‘ 𝐷 ) ) | 
						
							| 26 | 4 6 19 16 | ldualvbase | ⊢ ( 𝜑  →  ( Base ‘ 𝐷 )  =  𝐹 ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) )  →  ( Base ‘ 𝐷 )  =  𝐹 ) | 
						
							| 28 | 25 27 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) )  →  𝑓  ∈  𝐹 ) | 
						
							| 29 | 15 4 5 17 28 | lkrssv | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) )  →  ( 𝐿 ‘ 𝑓 )  ⊆  ( Base ‘ 𝑈 ) ) | 
						
							| 30 |  | eqid | ⊢ ( Scalar ‘ 𝐷 )  =  ( Scalar ‘ 𝐷 ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐷 ) )  =  ( Base ‘ ( Scalar ‘ 𝐷 ) ) | 
						
							| 32 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐷 )  =  (  ·𝑠  ‘ 𝐷 ) | 
						
							| 33 | 30 31 19 32 7 | ellspsn | ⊢ ( ( 𝐷  ∈  LMod  ∧  𝐺  ∈  ( Base ‘ 𝐷 ) )  →  ( 𝑓  ∈  ( 𝑁 ‘ { 𝐺 } )  ↔  ∃ 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝐷 ) ) 𝑓  =  ( 𝑘 (  ·𝑠  ‘ 𝐷 ) 𝐺 ) ) ) | 
						
							| 34 | 18 20 33 | syl2anc | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝑁 ‘ { 𝐺 } )  ↔  ∃ 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝐷 ) ) 𝑓  =  ( 𝑘 (  ·𝑠  ‘ 𝐷 ) 𝐺 ) ) ) | 
						
							| 35 |  | eqid | ⊢ ( Scalar ‘ 𝑈 )  =  ( Scalar ‘ 𝑈 ) | 
						
							| 36 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) )  =  ( Base ‘ ( Scalar ‘ 𝑈 ) ) | 
						
							| 37 | 35 36 6 30 31 16 | ldualsbase | ⊢ ( 𝜑  →  ( Base ‘ ( Scalar ‘ 𝐷 ) )  =  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 38 | 37 | rexeqdv | ⊢ ( 𝜑  →  ( ∃ 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝐷 ) ) 𝑓  =  ( 𝑘 (  ·𝑠  ‘ 𝐷 ) 𝐺 )  ↔  ∃ 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑓  =  ( 𝑘 (  ·𝑠  ‘ 𝐷 ) 𝐺 ) ) ) | 
						
							| 39 | 34 38 | bitrd | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝑁 ‘ { 𝐺 } )  ↔  ∃ 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑓  =  ( 𝑘 (  ·𝑠  ‘ 𝐷 ) 𝐺 ) ) ) | 
						
							| 40 | 39 | biimpa | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) )  →  ∃ 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑓  =  ( 𝑘 (  ·𝑠  ‘ 𝐷 ) 𝐺 ) ) | 
						
							| 41 | 1 3 8 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) )  →  𝑈  ∈  LVec ) | 
						
							| 43 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) )  →  𝐺  ∈  𝐹 ) | 
						
							| 44 | 35 36 4 5 6 32 42 43 28 | lkrss2N | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) )  →  ( ( 𝐿 ‘ 𝐺 )  ⊆  ( 𝐿 ‘ 𝑓 )  ↔  ∃ 𝑘  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑓  =  ( 𝑘 (  ·𝑠  ‘ 𝐷 ) 𝐺 ) ) ) | 
						
							| 45 | 40 44 | mpbird | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) )  →  ( 𝐿 ‘ 𝐺 )  ⊆  ( 𝐿 ‘ 𝑓 ) ) | 
						
							| 46 | 1 3 15 2 | dochss | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐿 ‘ 𝑓 )  ⊆  ( Base ‘ 𝑈 )  ∧  ( 𝐿 ‘ 𝐺 )  ⊆  ( 𝐿 ‘ 𝑓 ) )  →  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) | 
						
							| 47 | 14 29 45 46 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) )  →  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  ⊆  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) | 
						
							| 48 | 47 | sseld | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑁 ‘ { 𝐺 } ) )  →  ( 𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  →  𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) | 
						
							| 49 | 48 | ex | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝑁 ‘ { 𝐺 } )  →  ( 𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  →  𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) ) | 
						
							| 50 | 13 49 | biimtrid | ⊢ ( 𝜑  →  ( 𝑓  ∈  𝑅  →  ( 𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  →  𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) ) | 
						
							| 51 | 50 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑓  ∈  𝑅 𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  →  𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) | 
						
							| 52 | 19 7 | lspsnid | ⊢ ( ( 𝐷  ∈  LMod  ∧  𝐺  ∈  ( Base ‘ 𝐷 ) )  →  𝐺  ∈  ( 𝑁 ‘ { 𝐺 } ) ) | 
						
							| 53 | 18 20 52 | syl2anc | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝑁 ‘ { 𝐺 } ) ) | 
						
							| 54 | 53 11 | eleqtrrdi | ⊢ ( 𝜑  →  𝐺  ∈  𝑅 ) | 
						
							| 55 |  | 2fveq3 | ⊢ ( 𝑓  =  𝐺  →  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  =  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) | 
						
							| 56 | 55 | eleq2d | ⊢ ( 𝑓  =  𝐺  →  ( 𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  ↔  𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) | 
						
							| 57 | 56 | rspcev | ⊢ ( ( 𝐺  ∈  𝑅  ∧  𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  →  ∃ 𝑓  ∈  𝑅 𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) ) | 
						
							| 58 | 54 57 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) )  →  ∃ 𝑓  ∈  𝑅 𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) ) | 
						
							| 59 | 58 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) )  →  ∃ 𝑓  ∈  𝑅 𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) ) ) ) | 
						
							| 60 | 51 59 | impbid | ⊢ ( 𝜑  →  ( ∃ 𝑓  ∈  𝑅 𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  ↔  𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) | 
						
							| 61 | 12 60 | bitrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ∪  𝑓  ∈  𝑅 (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  ↔  𝑥  ∈  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) ) | 
						
							| 62 | 61 | eqrdv | ⊢ ( 𝜑  →  ∪  𝑓  ∈  𝑅 (  ⊥  ‘ ( 𝐿 ‘ 𝑓 ) )  =  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) | 
						
							| 63 | 10 62 | eqtrid | ⊢ ( 𝜑  →  𝑄  =  (  ⊥  ‘ ( 𝐿 ‘ 𝐺 ) ) ) |