Step |
Hyp |
Ref |
Expression |
1 |
|
lkrss2.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
2 |
|
lkrss2.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
3 |
|
lkrss2.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
4 |
|
lkrss2.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
5 |
|
lkrss2.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
6 |
|
lkrss2.t |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
7 |
|
lkrss2.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
8 |
|
lkrss2.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
9 |
|
lkrss2.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝐹 ) |
10 |
|
sspss |
⊢ ( ( 𝐾 ‘ 𝐺 ) ⊆ ( 𝐾 ‘ 𝐻 ) ↔ ( ( 𝐾 ‘ 𝐺 ) ⊊ ( 𝐾 ‘ 𝐻 ) ∨ ( 𝐾 ‘ 𝐺 ) = ( 𝐾 ‘ 𝐻 ) ) ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
12 |
3 4 5 11 7 8 9
|
lkrpssN |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐺 ) ⊊ ( 𝐾 ‘ 𝐻 ) ↔ ( 𝐺 ≠ ( 0g ‘ 𝐷 ) ∧ 𝐻 = ( 0g ‘ 𝐷 ) ) ) ) |
13 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
14 |
7 13
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
16 |
1 2 15
|
lmod0cl |
⊢ ( 𝑊 ∈ LMod → ( 0g ‘ 𝑆 ) ∈ 𝑅 ) |
17 |
14 16
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ 𝑅 ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐻 = ( 0g ‘ 𝐷 ) ) → ( 0g ‘ 𝑆 ) ∈ 𝑅 ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐻 = ( 0g ‘ 𝐷 ) ) → 𝐻 = ( 0g ‘ 𝐷 ) ) |
20 |
3 1 15 5 6 11 14 8
|
ldual0vs |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑆 ) · 𝐺 ) = ( 0g ‘ 𝐷 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐻 = ( 0g ‘ 𝐷 ) ) → ( ( 0g ‘ 𝑆 ) · 𝐺 ) = ( 0g ‘ 𝐷 ) ) |
22 |
19 21
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐻 = ( 0g ‘ 𝐷 ) ) → 𝐻 = ( ( 0g ‘ 𝑆 ) · 𝐺 ) ) |
23 |
|
oveq1 |
⊢ ( 𝑟 = ( 0g ‘ 𝑆 ) → ( 𝑟 · 𝐺 ) = ( ( 0g ‘ 𝑆 ) · 𝐺 ) ) |
24 |
23
|
rspceeqv |
⊢ ( ( ( 0g ‘ 𝑆 ) ∈ 𝑅 ∧ 𝐻 = ( ( 0g ‘ 𝑆 ) · 𝐺 ) ) → ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝑟 · 𝐺 ) ) |
25 |
18 22 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐻 = ( 0g ‘ 𝐷 ) ) → ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝑟 · 𝐺 ) ) |
26 |
25
|
ex |
⊢ ( 𝜑 → ( 𝐻 = ( 0g ‘ 𝐷 ) → ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝑟 · 𝐺 ) ) ) |
27 |
26
|
adantld |
⊢ ( 𝜑 → ( ( 𝐺 ≠ ( 0g ‘ 𝐷 ) ∧ 𝐻 = ( 0g ‘ 𝐷 ) ) → ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝑟 · 𝐺 ) ) ) |
28 |
12 27
|
sylbid |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐺 ) ⊊ ( 𝐾 ‘ 𝐻 ) → ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝑟 · 𝐺 ) ) ) |
29 |
28
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝐺 ) ⊊ ( 𝐾 ‘ 𝐻 ) ) → ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝑟 · 𝐺 ) ) |
30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝐺 ) = ( 𝐾 ‘ 𝐻 ) ) → 𝑊 ∈ LVec ) |
31 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝐺 ) = ( 𝐾 ‘ 𝐻 ) ) → 𝐺 ∈ 𝐹 ) |
32 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝐺 ) = ( 𝐾 ‘ 𝐻 ) ) → 𝐻 ∈ 𝐹 ) |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝐺 ) = ( 𝐾 ‘ 𝐻 ) ) → ( 𝐾 ‘ 𝐺 ) = ( 𝐾 ‘ 𝐻 ) ) |
34 |
1 2 3 4 5 6 30 31 32 33
|
eqlkr4 |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝐺 ) = ( 𝐾 ‘ 𝐻 ) ) → ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝑟 · 𝐺 ) ) |
35 |
29 34
|
jaodan |
⊢ ( ( 𝜑 ∧ ( ( 𝐾 ‘ 𝐺 ) ⊊ ( 𝐾 ‘ 𝐻 ) ∨ ( 𝐾 ‘ 𝐺 ) = ( 𝐾 ‘ 𝐻 ) ) ) → ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝑟 · 𝐺 ) ) |
36 |
10 35
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝐺 ) ⊆ ( 𝐾 ‘ 𝐻 ) ) → ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝑟 · 𝐺 ) ) |
37 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝑊 ∈ LVec ) |
38 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝐺 ∈ 𝐹 ) |
39 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝑟 ∈ 𝑅 ) |
40 |
1 2 3 4 5 6 37 38 39
|
lkrss |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝐾 ‘ 𝐺 ) ⊆ ( 𝐾 ‘ ( 𝑟 · 𝐺 ) ) ) |
41 |
40
|
ex |
⊢ ( 𝜑 → ( 𝑟 ∈ 𝑅 → ( 𝐾 ‘ 𝐺 ) ⊆ ( 𝐾 ‘ ( 𝑟 · 𝐺 ) ) ) ) |
42 |
|
fveq2 |
⊢ ( 𝐻 = ( 𝑟 · 𝐺 ) → ( 𝐾 ‘ 𝐻 ) = ( 𝐾 ‘ ( 𝑟 · 𝐺 ) ) ) |
43 |
42
|
sseq2d |
⊢ ( 𝐻 = ( 𝑟 · 𝐺 ) → ( ( 𝐾 ‘ 𝐺 ) ⊆ ( 𝐾 ‘ 𝐻 ) ↔ ( 𝐾 ‘ 𝐺 ) ⊆ ( 𝐾 ‘ ( 𝑟 · 𝐺 ) ) ) ) |
44 |
43
|
biimprcd |
⊢ ( ( 𝐾 ‘ 𝐺 ) ⊆ ( 𝐾 ‘ ( 𝑟 · 𝐺 ) ) → ( 𝐻 = ( 𝑟 · 𝐺 ) → ( 𝐾 ‘ 𝐺 ) ⊆ ( 𝐾 ‘ 𝐻 ) ) ) |
45 |
41 44
|
syl6 |
⊢ ( 𝜑 → ( 𝑟 ∈ 𝑅 → ( 𝐻 = ( 𝑟 · 𝐺 ) → ( 𝐾 ‘ 𝐺 ) ⊆ ( 𝐾 ‘ 𝐻 ) ) ) ) |
46 |
45
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝑟 · 𝐺 ) → ( 𝐾 ‘ 𝐺 ) ⊆ ( 𝐾 ‘ 𝐻 ) ) ) |
47 |
46
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝑟 · 𝐺 ) ) → ( 𝐾 ‘ 𝐺 ) ⊆ ( 𝐾 ‘ 𝐻 ) ) |
48 |
36 47
|
impbida |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐺 ) ⊆ ( 𝐾 ‘ 𝐻 ) ↔ ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝑟 · 𝐺 ) ) ) |