| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lkrss2.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | lkrss2.r | ⊢ 𝑅  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | lkrss2.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑊 ) | 
						
							| 4 |  | lkrss2.k | ⊢ 𝐾  =  ( LKer ‘ 𝑊 ) | 
						
							| 5 |  | lkrss2.d | ⊢ 𝐷  =  ( LDual ‘ 𝑊 ) | 
						
							| 6 |  | lkrss2.t | ⊢  ·   =  (  ·𝑠  ‘ 𝐷 ) | 
						
							| 7 |  | lkrss2.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 8 |  | lkrss2.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 9 |  | lkrss2.h | ⊢ ( 𝜑  →  𝐻  ∈  𝐹 ) | 
						
							| 10 |  | sspss | ⊢ ( ( 𝐾 ‘ 𝐺 )  ⊆  ( 𝐾 ‘ 𝐻 )  ↔  ( ( 𝐾 ‘ 𝐺 )  ⊊  ( 𝐾 ‘ 𝐻 )  ∨  ( 𝐾 ‘ 𝐺 )  =  ( 𝐾 ‘ 𝐻 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝐷 )  =  ( 0g ‘ 𝐷 ) | 
						
							| 12 | 3 4 5 11 7 8 9 | lkrpssN | ⊢ ( 𝜑  →  ( ( 𝐾 ‘ 𝐺 )  ⊊  ( 𝐾 ‘ 𝐻 )  ↔  ( 𝐺  ≠  ( 0g ‘ 𝐷 )  ∧  𝐻  =  ( 0g ‘ 𝐷 ) ) ) ) | 
						
							| 13 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 14 | 7 13 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 15 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 16 | 1 2 15 | lmod0cl | ⊢ ( 𝑊  ∈  LMod  →  ( 0g ‘ 𝑆 )  ∈  𝑅 ) | 
						
							| 17 | 14 16 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑆 )  ∈  𝑅 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝐻  =  ( 0g ‘ 𝐷 ) )  →  ( 0g ‘ 𝑆 )  ∈  𝑅 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐻  =  ( 0g ‘ 𝐷 ) )  →  𝐻  =  ( 0g ‘ 𝐷 ) ) | 
						
							| 20 | 3 1 15 5 6 11 14 8 | ldual0vs | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝑆 )  ·  𝐺 )  =  ( 0g ‘ 𝐷 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝐻  =  ( 0g ‘ 𝐷 ) )  →  ( ( 0g ‘ 𝑆 )  ·  𝐺 )  =  ( 0g ‘ 𝐷 ) ) | 
						
							| 22 | 19 21 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝐻  =  ( 0g ‘ 𝐷 ) )  →  𝐻  =  ( ( 0g ‘ 𝑆 )  ·  𝐺 ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑟  =  ( 0g ‘ 𝑆 )  →  ( 𝑟  ·  𝐺 )  =  ( ( 0g ‘ 𝑆 )  ·  𝐺 ) ) | 
						
							| 24 | 23 | rspceeqv | ⊢ ( ( ( 0g ‘ 𝑆 )  ∈  𝑅  ∧  𝐻  =  ( ( 0g ‘ 𝑆 )  ·  𝐺 ) )  →  ∃ 𝑟  ∈  𝑅 𝐻  =  ( 𝑟  ·  𝐺 ) ) | 
						
							| 25 | 18 22 24 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐻  =  ( 0g ‘ 𝐷 ) )  →  ∃ 𝑟  ∈  𝑅 𝐻  =  ( 𝑟  ·  𝐺 ) ) | 
						
							| 26 | 25 | ex | ⊢ ( 𝜑  →  ( 𝐻  =  ( 0g ‘ 𝐷 )  →  ∃ 𝑟  ∈  𝑅 𝐻  =  ( 𝑟  ·  𝐺 ) ) ) | 
						
							| 27 | 26 | adantld | ⊢ ( 𝜑  →  ( ( 𝐺  ≠  ( 0g ‘ 𝐷 )  ∧  𝐻  =  ( 0g ‘ 𝐷 ) )  →  ∃ 𝑟  ∈  𝑅 𝐻  =  ( 𝑟  ·  𝐺 ) ) ) | 
						
							| 28 | 12 27 | sylbid | ⊢ ( 𝜑  →  ( ( 𝐾 ‘ 𝐺 )  ⊊  ( 𝐾 ‘ 𝐻 )  →  ∃ 𝑟  ∈  𝑅 𝐻  =  ( 𝑟  ·  𝐺 ) ) ) | 
						
							| 29 | 28 | imp | ⊢ ( ( 𝜑  ∧  ( 𝐾 ‘ 𝐺 )  ⊊  ( 𝐾 ‘ 𝐻 ) )  →  ∃ 𝑟  ∈  𝑅 𝐻  =  ( 𝑟  ·  𝐺 ) ) | 
						
							| 30 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐾 ‘ 𝐺 )  =  ( 𝐾 ‘ 𝐻 ) )  →  𝑊  ∈  LVec ) | 
						
							| 31 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐾 ‘ 𝐺 )  =  ( 𝐾 ‘ 𝐻 ) )  →  𝐺  ∈  𝐹 ) | 
						
							| 32 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐾 ‘ 𝐺 )  =  ( 𝐾 ‘ 𝐻 ) )  →  𝐻  ∈  𝐹 ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐾 ‘ 𝐺 )  =  ( 𝐾 ‘ 𝐻 ) )  →  ( 𝐾 ‘ 𝐺 )  =  ( 𝐾 ‘ 𝐻 ) ) | 
						
							| 34 | 1 2 3 4 5 6 30 31 32 33 | eqlkr4 | ⊢ ( ( 𝜑  ∧  ( 𝐾 ‘ 𝐺 )  =  ( 𝐾 ‘ 𝐻 ) )  →  ∃ 𝑟  ∈  𝑅 𝐻  =  ( 𝑟  ·  𝐺 ) ) | 
						
							| 35 | 29 34 | jaodan | ⊢ ( ( 𝜑  ∧  ( ( 𝐾 ‘ 𝐺 )  ⊊  ( 𝐾 ‘ 𝐻 )  ∨  ( 𝐾 ‘ 𝐺 )  =  ( 𝐾 ‘ 𝐻 ) ) )  →  ∃ 𝑟  ∈  𝑅 𝐻  =  ( 𝑟  ·  𝐺 ) ) | 
						
							| 36 | 10 35 | sylan2b | ⊢ ( ( 𝜑  ∧  ( 𝐾 ‘ 𝐺 )  ⊆  ( 𝐾 ‘ 𝐻 ) )  →  ∃ 𝑟  ∈  𝑅 𝐻  =  ( 𝑟  ·  𝐺 ) ) | 
						
							| 37 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  𝑊  ∈  LVec ) | 
						
							| 38 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  𝐺  ∈  𝐹 ) | 
						
							| 39 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  𝑟  ∈  𝑅 ) | 
						
							| 40 | 1 2 3 4 5 6 37 38 39 | lkrss | ⊢ ( ( 𝜑  ∧  𝑟  ∈  𝑅 )  →  ( 𝐾 ‘ 𝐺 )  ⊆  ( 𝐾 ‘ ( 𝑟  ·  𝐺 ) ) ) | 
						
							| 41 | 40 | ex | ⊢ ( 𝜑  →  ( 𝑟  ∈  𝑅  →  ( 𝐾 ‘ 𝐺 )  ⊆  ( 𝐾 ‘ ( 𝑟  ·  𝐺 ) ) ) ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝐻  =  ( 𝑟  ·  𝐺 )  →  ( 𝐾 ‘ 𝐻 )  =  ( 𝐾 ‘ ( 𝑟  ·  𝐺 ) ) ) | 
						
							| 43 | 42 | sseq2d | ⊢ ( 𝐻  =  ( 𝑟  ·  𝐺 )  →  ( ( 𝐾 ‘ 𝐺 )  ⊆  ( 𝐾 ‘ 𝐻 )  ↔  ( 𝐾 ‘ 𝐺 )  ⊆  ( 𝐾 ‘ ( 𝑟  ·  𝐺 ) ) ) ) | 
						
							| 44 | 43 | biimprcd | ⊢ ( ( 𝐾 ‘ 𝐺 )  ⊆  ( 𝐾 ‘ ( 𝑟  ·  𝐺 ) )  →  ( 𝐻  =  ( 𝑟  ·  𝐺 )  →  ( 𝐾 ‘ 𝐺 )  ⊆  ( 𝐾 ‘ 𝐻 ) ) ) | 
						
							| 45 | 41 44 | syl6 | ⊢ ( 𝜑  →  ( 𝑟  ∈  𝑅  →  ( 𝐻  =  ( 𝑟  ·  𝐺 )  →  ( 𝐾 ‘ 𝐺 )  ⊆  ( 𝐾 ‘ 𝐻 ) ) ) ) | 
						
							| 46 | 45 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑟  ∈  𝑅 𝐻  =  ( 𝑟  ·  𝐺 )  →  ( 𝐾 ‘ 𝐺 )  ⊆  ( 𝐾 ‘ 𝐻 ) ) ) | 
						
							| 47 | 46 | imp | ⊢ ( ( 𝜑  ∧  ∃ 𝑟  ∈  𝑅 𝐻  =  ( 𝑟  ·  𝐺 ) )  →  ( 𝐾 ‘ 𝐺 )  ⊆  ( 𝐾 ‘ 𝐻 ) ) | 
						
							| 48 | 36 47 | impbida | ⊢ ( 𝜑  →  ( ( 𝐾 ‘ 𝐺 )  ⊆  ( 𝐾 ‘ 𝐻 )  ↔  ∃ 𝑟  ∈  𝑅 𝐻  =  ( 𝑟  ·  𝐺 ) ) ) |