| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lkreq.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
lkreq.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
| 3 |
|
lkreq.o |
⊢ 0 = ( 0g ‘ 𝑆 ) |
| 4 |
|
lkreq.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 5 |
|
lkreq.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
| 6 |
|
lkreq.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
| 7 |
|
lkreq.t |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
| 8 |
|
lkreq.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 9 |
|
lkreq.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑅 ∖ { 0 } ) ) |
| 10 |
|
lkreq.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝐹 ) |
| 11 |
|
lkreq.g |
⊢ ( 𝜑 → 𝐺 = ( 𝐴 · 𝐻 ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( 𝜑 → ( 𝐺 = ( 0g ‘ 𝐷 ) ↔ ( 𝐴 · 𝐻 ) = ( 0g ‘ 𝐷 ) ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 14 |
|
eqid |
⊢ ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 ) |
| 15 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝐷 ) ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = ( 0g ‘ ( Scalar ‘ 𝐷 ) ) |
| 17 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
| 18 |
6 8
|
lduallvec |
⊢ ( 𝜑 → 𝐷 ∈ LVec ) |
| 19 |
9
|
eldifad |
⊢ ( 𝜑 → 𝐴 ∈ 𝑅 ) |
| 20 |
1 2 6 14 15 8
|
ldualsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐷 ) ) = 𝑅 ) |
| 21 |
19 20
|
eleqtrrd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ) |
| 22 |
4 6 13 8 10
|
ldualelvbase |
⊢ ( 𝜑 → 𝐻 ∈ ( Base ‘ 𝐷 ) ) |
| 23 |
13 7 14 15 16 17 18 21 22
|
lvecvs0or |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐻 ) = ( 0g ‘ 𝐷 ) ↔ ( 𝐴 = ( 0g ‘ ( Scalar ‘ 𝐷 ) ) ∨ 𝐻 = ( 0g ‘ 𝐷 ) ) ) ) |
| 24 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 25 |
8 24
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 26 |
1 3 6 14 16 25
|
ldual0 |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = 0 ) |
| 27 |
26
|
eqeq2d |
⊢ ( 𝜑 → ( 𝐴 = ( 0g ‘ ( Scalar ‘ 𝐷 ) ) ↔ 𝐴 = 0 ) ) |
| 28 |
|
eldifsni |
⊢ ( 𝐴 ∈ ( 𝑅 ∖ { 0 } ) → 𝐴 ≠ 0 ) |
| 29 |
9 28
|
syl |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 30 |
29
|
a1d |
⊢ ( 𝜑 → ( 𝐻 ≠ ( 0g ‘ 𝐷 ) → 𝐴 ≠ 0 ) ) |
| 31 |
30
|
necon4d |
⊢ ( 𝜑 → ( 𝐴 = 0 → 𝐻 = ( 0g ‘ 𝐷 ) ) ) |
| 32 |
27 31
|
sylbid |
⊢ ( 𝜑 → ( 𝐴 = ( 0g ‘ ( Scalar ‘ 𝐷 ) ) → 𝐻 = ( 0g ‘ 𝐷 ) ) ) |
| 33 |
|
idd |
⊢ ( 𝜑 → ( 𝐻 = ( 0g ‘ 𝐷 ) → 𝐻 = ( 0g ‘ 𝐷 ) ) ) |
| 34 |
32 33
|
jaod |
⊢ ( 𝜑 → ( ( 𝐴 = ( 0g ‘ ( Scalar ‘ 𝐷 ) ) ∨ 𝐻 = ( 0g ‘ 𝐷 ) ) → 𝐻 = ( 0g ‘ 𝐷 ) ) ) |
| 35 |
23 34
|
sylbid |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐻 ) = ( 0g ‘ 𝐷 ) → 𝐻 = ( 0g ‘ 𝐷 ) ) ) |
| 36 |
12 35
|
sylbid |
⊢ ( 𝜑 → ( 𝐺 = ( 0g ‘ 𝐷 ) → 𝐻 = ( 0g ‘ 𝐷 ) ) ) |
| 37 |
|
nne |
⊢ ( ¬ 𝐻 ≠ ( 0g ‘ 𝐷 ) ↔ 𝐻 = ( 0g ‘ 𝐷 ) ) |
| 38 |
36 37
|
imbitrrdi |
⊢ ( 𝜑 → ( 𝐺 = ( 0g ‘ 𝐷 ) → ¬ 𝐻 ≠ ( 0g ‘ 𝐷 ) ) ) |
| 39 |
38
|
con3d |
⊢ ( 𝜑 → ( ¬ ¬ 𝐻 ≠ ( 0g ‘ 𝐷 ) → ¬ 𝐺 = ( 0g ‘ 𝐷 ) ) ) |
| 40 |
39
|
orrd |
⊢ ( 𝜑 → ( ¬ 𝐻 ≠ ( 0g ‘ 𝐷 ) ∨ ¬ 𝐺 = ( 0g ‘ 𝐷 ) ) ) |
| 41 |
|
ianor |
⊢ ( ¬ ( 𝐻 ≠ ( 0g ‘ 𝐷 ) ∧ 𝐺 = ( 0g ‘ 𝐷 ) ) ↔ ( ¬ 𝐻 ≠ ( 0g ‘ 𝐷 ) ∨ ¬ 𝐺 = ( 0g ‘ 𝐷 ) ) ) |
| 42 |
40 41
|
sylibr |
⊢ ( 𝜑 → ¬ ( 𝐻 ≠ ( 0g ‘ 𝐷 ) ∧ 𝐺 = ( 0g ‘ 𝐷 ) ) ) |
| 43 |
4 1 2 6 7 25 19 10
|
ldualvscl |
⊢ ( 𝜑 → ( 𝐴 · 𝐻 ) ∈ 𝐹 ) |
| 44 |
11 43
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 45 |
4 5 6 17 8 10 44
|
lkrpssN |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐻 ) ⊊ ( 𝐾 ‘ 𝐺 ) ↔ ( 𝐻 ≠ ( 0g ‘ 𝐷 ) ∧ 𝐺 = ( 0g ‘ 𝐷 ) ) ) ) |
| 46 |
|
df-pss |
⊢ ( ( 𝐾 ‘ 𝐻 ) ⊊ ( 𝐾 ‘ 𝐺 ) ↔ ( ( 𝐾 ‘ 𝐻 ) ⊆ ( 𝐾 ‘ 𝐺 ) ∧ ( 𝐾 ‘ 𝐻 ) ≠ ( 𝐾 ‘ 𝐺 ) ) ) |
| 47 |
45 46
|
bitr3di |
⊢ ( 𝜑 → ( ( 𝐻 ≠ ( 0g ‘ 𝐷 ) ∧ 𝐺 = ( 0g ‘ 𝐷 ) ) ↔ ( ( 𝐾 ‘ 𝐻 ) ⊆ ( 𝐾 ‘ 𝐺 ) ∧ ( 𝐾 ‘ 𝐻 ) ≠ ( 𝐾 ‘ 𝐺 ) ) ) ) |
| 48 |
1 2 4 5 6 7 8 10 19
|
lkrss |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝐻 ) ⊆ ( 𝐾 ‘ ( 𝐴 · 𝐻 ) ) ) |
| 49 |
11
|
fveq2d |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝐺 ) = ( 𝐾 ‘ ( 𝐴 · 𝐻 ) ) ) |
| 50 |
48 49
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝐻 ) ⊆ ( 𝐾 ‘ 𝐺 ) ) |
| 51 |
50
|
biantrurd |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐻 ) ≠ ( 𝐾 ‘ 𝐺 ) ↔ ( ( 𝐾 ‘ 𝐻 ) ⊆ ( 𝐾 ‘ 𝐺 ) ∧ ( 𝐾 ‘ 𝐻 ) ≠ ( 𝐾 ‘ 𝐺 ) ) ) ) |
| 52 |
47 51
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝐻 ≠ ( 0g ‘ 𝐷 ) ∧ 𝐺 = ( 0g ‘ 𝐷 ) ) ↔ ( 𝐾 ‘ 𝐻 ) ≠ ( 𝐾 ‘ 𝐺 ) ) ) |
| 53 |
52
|
necon2bbid |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝐻 ) = ( 𝐾 ‘ 𝐺 ) ↔ ¬ ( 𝐻 ≠ ( 0g ‘ 𝐷 ) ∧ 𝐺 = ( 0g ‘ 𝐷 ) ) ) ) |
| 54 |
42 53
|
mpbird |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝐻 ) = ( 𝐾 ‘ 𝐺 ) ) |
| 55 |
54
|
eqcomd |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝐺 ) = ( 𝐾 ‘ 𝐻 ) ) |