| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lkrlspeq.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 2 |
|
lkrlspeq.l |
⊢ 𝐿 = ( LKer ‘ 𝑊 ) |
| 3 |
|
lkrlspeq.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
| 4 |
|
lkrlspeq.o |
⊢ 0 = ( 0g ‘ 𝐷 ) |
| 5 |
|
lkrlspeq.j |
⊢ 𝑁 = ( LSpan ‘ 𝐷 ) |
| 6 |
|
lkrlspeq.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 7 |
|
lkrlspeq.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝐹 ) |
| 8 |
|
lkrlspeq.g |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝑁 ‘ { 𝐻 } ) ∖ { 0 } ) ) |
| 9 |
8
|
eldifad |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑁 ‘ { 𝐻 } ) ) |
| 10 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 11 |
6 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 |
3 11
|
lduallmod |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 14 |
1 3 13 6 7
|
ldualelvbase |
⊢ ( 𝜑 → 𝐻 ∈ ( Base ‘ 𝐷 ) ) |
| 15 |
|
eqid |
⊢ ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝐷 ) ) |
| 17 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐷 ) = ( ·𝑠 ‘ 𝐷 ) |
| 18 |
15 16 13 17 5
|
ellspsn |
⊢ ( ( 𝐷 ∈ LMod ∧ 𝐻 ∈ ( Base ‘ 𝐷 ) ) → ( 𝐺 ∈ ( 𝑁 ‘ { 𝐻 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) ) |
| 19 |
12 14 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∈ ( 𝑁 ‘ { 𝐻 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) ) |
| 20 |
9 19
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) |
| 21 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 22 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 23 |
21 22 3 15 16 6
|
ldualsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 24 |
20 23
|
rexeqtrdv |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) |
| 25 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 26 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → 𝑊 ∈ LVec ) |
| 27 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 28 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) |
| 29 |
|
eldifsni |
⊢ ( 𝐺 ∈ ( ( 𝑁 ‘ { 𝐻 } ) ∖ { 0 } ) → 𝐺 ≠ 0 ) |
| 30 |
8 29
|
syl |
⊢ ( 𝜑 → 𝐺 ≠ 0 ) |
| 31 |
30
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → 𝐺 ≠ 0 ) |
| 32 |
28 31
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ≠ 0 ) |
| 33 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = ( 0g ‘ ( Scalar ‘ 𝐷 ) ) |
| 34 |
21 25 3 15 33 11
|
ldual0 |
⊢ ( 𝜑 → ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 35 |
34
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → ( 0g ‘ ( Scalar ‘ 𝐷 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 36 |
35
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝐷 ) ) ↔ 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 37 |
|
orc |
⊢ ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝐷 ) ) → ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝐷 ) ) ∨ 𝐻 = 0 ) ) |
| 38 |
36 37
|
biimtrrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝐷 ) ) ∨ 𝐻 = 0 ) ) ) |
| 39 |
3 6
|
lduallvec |
⊢ ( 𝜑 → 𝐷 ∈ LVec ) |
| 40 |
39
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → 𝐷 ∈ LVec ) |
| 41 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 42 |
27 41
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ) |
| 43 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → 𝐻 ∈ ( Base ‘ 𝐷 ) ) |
| 44 |
13 17 15 16 33 4 40 42 43
|
lvecvs0or |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) = 0 ↔ ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝐷 ) ) ∨ 𝐻 = 0 ) ) ) |
| 45 |
38 44
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → ( 𝑘 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) = 0 ) ) |
| 46 |
45
|
necon3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ≠ 0 → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 47 |
32 46
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 48 |
|
eldifsn |
⊢ ( 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ↔ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑘 ≠ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 49 |
27 47 48
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → 𝑘 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
| 50 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → 𝐻 ∈ 𝐹 ) |
| 51 |
21 22 25 1 2 3 17 26 49 50 28
|
lkreqN |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) ) → ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) |
| 52 |
51
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝐺 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐻 ) → ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) ) |
| 53 |
24 52
|
mpd |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐻 ) ) |