Metamath Proof Explorer


Theorem lkrlspeqN

Description: Condition for colinear functionals to have equal kernels. (Contributed by NM, 20-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lkrlspeq.f F = LFnl W
lkrlspeq.l L = LKer W
lkrlspeq.d D = LDual W
lkrlspeq.o 0 ˙ = 0 D
lkrlspeq.j N = LSpan D
lkrlspeq.w φ W LVec
lkrlspeq.h φ H F
lkrlspeq.g φ G N H 0 ˙
Assertion lkrlspeqN φ L G = L H

Proof

Step Hyp Ref Expression
1 lkrlspeq.f F = LFnl W
2 lkrlspeq.l L = LKer W
3 lkrlspeq.d D = LDual W
4 lkrlspeq.o 0 ˙ = 0 D
5 lkrlspeq.j N = LSpan D
6 lkrlspeq.w φ W LVec
7 lkrlspeq.h φ H F
8 lkrlspeq.g φ G N H 0 ˙
9 8 eldifad φ G N H
10 lveclmod W LVec W LMod
11 6 10 syl φ W LMod
12 3 11 lduallmod φ D LMod
13 eqid Base D = Base D
14 1 3 13 6 7 ldualelvbase φ H Base D
15 eqid Scalar D = Scalar D
16 eqid Base Scalar D = Base Scalar D
17 eqid D = D
18 15 16 13 17 5 lspsnel D LMod H Base D G N H k Base Scalar D G = k D H
19 12 14 18 syl2anc φ G N H k Base Scalar D G = k D H
20 9 19 mpbid φ k Base Scalar D G = k D H
21 eqid Scalar W = Scalar W
22 eqid Base Scalar W = Base Scalar W
23 21 22 3 15 16 6 ldualsbase φ Base Scalar D = Base Scalar W
24 23 rexeqdv φ k Base Scalar D G = k D H k Base Scalar W G = k D H
25 20 24 mpbid φ k Base Scalar W G = k D H
26 eqid 0 Scalar W = 0 Scalar W
27 6 3ad2ant1 φ k Base Scalar W G = k D H W LVec
28 simp2 φ k Base Scalar W G = k D H k Base Scalar W
29 simp3 φ k Base Scalar W G = k D H G = k D H
30 eldifsni G N H 0 ˙ G 0 ˙
31 8 30 syl φ G 0 ˙
32 31 3ad2ant1 φ k Base Scalar W G = k D H G 0 ˙
33 29 32 eqnetrrd φ k Base Scalar W G = k D H k D H 0 ˙
34 eqid 0 Scalar D = 0 Scalar D
35 21 26 3 15 34 11 ldual0 φ 0 Scalar D = 0 Scalar W
36 35 3ad2ant1 φ k Base Scalar W G = k D H 0 Scalar D = 0 Scalar W
37 36 eqeq2d φ k Base Scalar W G = k D H k = 0 Scalar D k = 0 Scalar W
38 orc k = 0 Scalar D k = 0 Scalar D H = 0 ˙
39 37 38 syl6bir φ k Base Scalar W G = k D H k = 0 Scalar W k = 0 Scalar D H = 0 ˙
40 3 6 lduallvec φ D LVec
41 40 3ad2ant1 φ k Base Scalar W G = k D H D LVec
42 23 3ad2ant1 φ k Base Scalar W G = k D H Base Scalar D = Base Scalar W
43 28 42 eleqtrrd φ k Base Scalar W G = k D H k Base Scalar D
44 14 3ad2ant1 φ k Base Scalar W G = k D H H Base D
45 13 17 15 16 34 4 41 43 44 lvecvs0or φ k Base Scalar W G = k D H k D H = 0 ˙ k = 0 Scalar D H = 0 ˙
46 39 45 sylibrd φ k Base Scalar W G = k D H k = 0 Scalar W k D H = 0 ˙
47 46 necon3d φ k Base Scalar W G = k D H k D H 0 ˙ k 0 Scalar W
48 33 47 mpd φ k Base Scalar W G = k D H k 0 Scalar W
49 eldifsn k Base Scalar W 0 Scalar W k Base Scalar W k 0 Scalar W
50 28 48 49 sylanbrc φ k Base Scalar W G = k D H k Base Scalar W 0 Scalar W
51 7 3ad2ant1 φ k Base Scalar W G = k D H H F
52 21 22 26 1 2 3 17 27 50 51 29 lkreqN φ k Base Scalar W G = k D H L G = L H
53 52 rexlimdv3a φ k Base Scalar W G = k D H L G = L H
54 25 53 mpd φ L G = L H