Step |
Hyp |
Ref |
Expression |
1 |
|
lkrlspeq.f |
|- F = ( LFnl ` W ) |
2 |
|
lkrlspeq.l |
|- L = ( LKer ` W ) |
3 |
|
lkrlspeq.d |
|- D = ( LDual ` W ) |
4 |
|
lkrlspeq.o |
|- .0. = ( 0g ` D ) |
5 |
|
lkrlspeq.j |
|- N = ( LSpan ` D ) |
6 |
|
lkrlspeq.w |
|- ( ph -> W e. LVec ) |
7 |
|
lkrlspeq.h |
|- ( ph -> H e. F ) |
8 |
|
lkrlspeq.g |
|- ( ph -> G e. ( ( N ` { H } ) \ { .0. } ) ) |
9 |
8
|
eldifad |
|- ( ph -> G e. ( N ` { H } ) ) |
10 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
11 |
6 10
|
syl |
|- ( ph -> W e. LMod ) |
12 |
3 11
|
lduallmod |
|- ( ph -> D e. LMod ) |
13 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
14 |
1 3 13 6 7
|
ldualelvbase |
|- ( ph -> H e. ( Base ` D ) ) |
15 |
|
eqid |
|- ( Scalar ` D ) = ( Scalar ` D ) |
16 |
|
eqid |
|- ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` D ) ) |
17 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
18 |
15 16 13 17 5
|
lspsnel |
|- ( ( D e. LMod /\ H e. ( Base ` D ) ) -> ( G e. ( N ` { H } ) <-> E. k e. ( Base ` ( Scalar ` D ) ) G = ( k ( .s ` D ) H ) ) ) |
19 |
12 14 18
|
syl2anc |
|- ( ph -> ( G e. ( N ` { H } ) <-> E. k e. ( Base ` ( Scalar ` D ) ) G = ( k ( .s ` D ) H ) ) ) |
20 |
9 19
|
mpbid |
|- ( ph -> E. k e. ( Base ` ( Scalar ` D ) ) G = ( k ( .s ` D ) H ) ) |
21 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
22 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
23 |
21 22 3 15 16 6
|
ldualsbase |
|- ( ph -> ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` W ) ) ) |
24 |
23
|
rexeqdv |
|- ( ph -> ( E. k e. ( Base ` ( Scalar ` D ) ) G = ( k ( .s ` D ) H ) <-> E. k e. ( Base ` ( Scalar ` W ) ) G = ( k ( .s ` D ) H ) ) ) |
25 |
20 24
|
mpbid |
|- ( ph -> E. k e. ( Base ` ( Scalar ` W ) ) G = ( k ( .s ` D ) H ) ) |
26 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
27 |
6
|
3ad2ant1 |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> W e. LVec ) |
28 |
|
simp2 |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> k e. ( Base ` ( Scalar ` W ) ) ) |
29 |
|
simp3 |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> G = ( k ( .s ` D ) H ) ) |
30 |
|
eldifsni |
|- ( G e. ( ( N ` { H } ) \ { .0. } ) -> G =/= .0. ) |
31 |
8 30
|
syl |
|- ( ph -> G =/= .0. ) |
32 |
31
|
3ad2ant1 |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> G =/= .0. ) |
33 |
29 32
|
eqnetrrd |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> ( k ( .s ` D ) H ) =/= .0. ) |
34 |
|
eqid |
|- ( 0g ` ( Scalar ` D ) ) = ( 0g ` ( Scalar ` D ) ) |
35 |
21 26 3 15 34 11
|
ldual0 |
|- ( ph -> ( 0g ` ( Scalar ` D ) ) = ( 0g ` ( Scalar ` W ) ) ) |
36 |
35
|
3ad2ant1 |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> ( 0g ` ( Scalar ` D ) ) = ( 0g ` ( Scalar ` W ) ) ) |
37 |
36
|
eqeq2d |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> ( k = ( 0g ` ( Scalar ` D ) ) <-> k = ( 0g ` ( Scalar ` W ) ) ) ) |
38 |
|
orc |
|- ( k = ( 0g ` ( Scalar ` D ) ) -> ( k = ( 0g ` ( Scalar ` D ) ) \/ H = .0. ) ) |
39 |
37 38
|
syl6bir |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> ( k = ( 0g ` ( Scalar ` W ) ) -> ( k = ( 0g ` ( Scalar ` D ) ) \/ H = .0. ) ) ) |
40 |
3 6
|
lduallvec |
|- ( ph -> D e. LVec ) |
41 |
40
|
3ad2ant1 |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> D e. LVec ) |
42 |
23
|
3ad2ant1 |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` W ) ) ) |
43 |
28 42
|
eleqtrrd |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> k e. ( Base ` ( Scalar ` D ) ) ) |
44 |
14
|
3ad2ant1 |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> H e. ( Base ` D ) ) |
45 |
13 17 15 16 34 4 41 43 44
|
lvecvs0or |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> ( ( k ( .s ` D ) H ) = .0. <-> ( k = ( 0g ` ( Scalar ` D ) ) \/ H = .0. ) ) ) |
46 |
39 45
|
sylibrd |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> ( k = ( 0g ` ( Scalar ` W ) ) -> ( k ( .s ` D ) H ) = .0. ) ) |
47 |
46
|
necon3d |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> ( ( k ( .s ` D ) H ) =/= .0. -> k =/= ( 0g ` ( Scalar ` W ) ) ) ) |
48 |
33 47
|
mpd |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> k =/= ( 0g ` ( Scalar ` W ) ) ) |
49 |
|
eldifsn |
|- ( k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) <-> ( k e. ( Base ` ( Scalar ` W ) ) /\ k =/= ( 0g ` ( Scalar ` W ) ) ) ) |
50 |
28 48 49
|
sylanbrc |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> k e. ( ( Base ` ( Scalar ` W ) ) \ { ( 0g ` ( Scalar ` W ) ) } ) ) |
51 |
7
|
3ad2ant1 |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> H e. F ) |
52 |
21 22 26 1 2 3 17 27 50 51 29
|
lkreqN |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) /\ G = ( k ( .s ` D ) H ) ) -> ( L ` G ) = ( L ` H ) ) |
53 |
52
|
rexlimdv3a |
|- ( ph -> ( E. k e. ( Base ` ( Scalar ` W ) ) G = ( k ( .s ` D ) H ) -> ( L ` G ) = ( L ` H ) ) ) |
54 |
25 53
|
mpd |
|- ( ph -> ( L ` G ) = ( L ` H ) ) |