Step |
Hyp |
Ref |
Expression |
1 |
|
lkreq.s |
|
2 |
|
lkreq.r |
|
3 |
|
lkreq.o |
|
4 |
|
lkreq.f |
|
5 |
|
lkreq.k |
|
6 |
|
lkreq.d |
|
7 |
|
lkreq.t |
|
8 |
|
lkreq.w |
|
9 |
|
lkreq.a |
|
10 |
|
lkreq.h |
|
11 |
|
lkreq.g |
|
12 |
11
|
eqeq1d |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
6 8
|
lduallvec |
|
19 |
9
|
eldifad |
|
20 |
1 2 6 14 15 8
|
ldualsbase |
|
21 |
19 20
|
eleqtrrd |
|
22 |
4 6 13 8 10
|
ldualelvbase |
|
23 |
13 7 14 15 16 17 18 21 22
|
lvecvs0or |
|
24 |
|
lveclmod |
|
25 |
8 24
|
syl |
|
26 |
1 3 6 14 16 25
|
ldual0 |
|
27 |
26
|
eqeq2d |
|
28 |
|
eldifsni |
|
29 |
9 28
|
syl |
|
30 |
29
|
a1d |
|
31 |
30
|
necon4d |
|
32 |
27 31
|
sylbid |
|
33 |
|
idd |
|
34 |
32 33
|
jaod |
|
35 |
23 34
|
sylbid |
|
36 |
12 35
|
sylbid |
|
37 |
|
nne |
|
38 |
36 37
|
syl6ibr |
|
39 |
38
|
con3d |
|
40 |
39
|
orrd |
|
41 |
|
ianor |
|
42 |
40 41
|
sylibr |
|
43 |
4 1 2 6 7 25 19 10
|
ldualvscl |
|
44 |
11 43
|
eqeltrd |
|
45 |
4 5 6 17 8 10 44
|
lkrpssN |
|
46 |
|
df-pss |
|
47 |
45 46
|
bitr3di |
|
48 |
1 2 4 5 6 7 8 10 19
|
lkrss |
|
49 |
11
|
fveq2d |
|
50 |
48 49
|
sseqtrrd |
|
51 |
50
|
biantrurd |
|
52 |
47 51
|
bitr4d |
|
53 |
52
|
necon2bbid |
|
54 |
42 53
|
mpbird |
|
55 |
54
|
eqcomd |
|