| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcfrvalsn.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | lcfrvalsn.o |  |-  ._|_ = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | lcfrvalsn.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | lcfrvalsn.f |  |-  F = ( LFnl ` U ) | 
						
							| 5 |  | lcfrvalsn.l |  |-  L = ( LKer ` U ) | 
						
							| 6 |  | lcfrvalsn.d |  |-  D = ( LDual ` U ) | 
						
							| 7 |  | lcfrvalsn.n |  |-  N = ( LSpan ` D ) | 
						
							| 8 |  | lcfrvalsn.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | lcfrvalsn.g |  |-  ( ph -> G e. F ) | 
						
							| 10 |  | lcfrvalsn.q |  |-  Q = U_ f e. R ( ._|_ ` ( L ` f ) ) | 
						
							| 11 |  | lcfrvalsn.r |  |-  R = ( N ` { G } ) | 
						
							| 12 |  | eliun |  |-  ( x e. U_ f e. R ( ._|_ ` ( L ` f ) ) <-> E. f e. R x e. ( ._|_ ` ( L ` f ) ) ) | 
						
							| 13 | 11 | eleq2i |  |-  ( f e. R <-> f e. ( N ` { G } ) ) | 
						
							| 14 | 8 | adantr |  |-  ( ( ph /\ f e. ( N ` { G } ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 15 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 16 | 1 3 8 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ f e. ( N ` { G } ) ) -> U e. LMod ) | 
						
							| 18 | 6 16 | lduallmod |  |-  ( ph -> D e. LMod ) | 
						
							| 19 |  | eqid |  |-  ( Base ` D ) = ( Base ` D ) | 
						
							| 20 | 4 6 19 16 9 | ldualelvbase |  |-  ( ph -> G e. ( Base ` D ) ) | 
						
							| 21 |  | eqid |  |-  ( LSubSp ` D ) = ( LSubSp ` D ) | 
						
							| 22 | 19 21 7 | lspsncl |  |-  ( ( D e. LMod /\ G e. ( Base ` D ) ) -> ( N ` { G } ) e. ( LSubSp ` D ) ) | 
						
							| 23 | 18 20 22 | syl2anc |  |-  ( ph -> ( N ` { G } ) e. ( LSubSp ` D ) ) | 
						
							| 24 | 19 21 | lssel |  |-  ( ( ( N ` { G } ) e. ( LSubSp ` D ) /\ f e. ( N ` { G } ) ) -> f e. ( Base ` D ) ) | 
						
							| 25 | 23 24 | sylan |  |-  ( ( ph /\ f e. ( N ` { G } ) ) -> f e. ( Base ` D ) ) | 
						
							| 26 | 4 6 19 16 | ldualvbase |  |-  ( ph -> ( Base ` D ) = F ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ f e. ( N ` { G } ) ) -> ( Base ` D ) = F ) | 
						
							| 28 | 25 27 | eleqtrd |  |-  ( ( ph /\ f e. ( N ` { G } ) ) -> f e. F ) | 
						
							| 29 | 15 4 5 17 28 | lkrssv |  |-  ( ( ph /\ f e. ( N ` { G } ) ) -> ( L ` f ) C_ ( Base ` U ) ) | 
						
							| 30 |  | eqid |  |-  ( Scalar ` D ) = ( Scalar ` D ) | 
						
							| 31 |  | eqid |  |-  ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` D ) ) | 
						
							| 32 |  | eqid |  |-  ( .s ` D ) = ( .s ` D ) | 
						
							| 33 | 30 31 19 32 7 | ellspsn |  |-  ( ( D e. LMod /\ G e. ( Base ` D ) ) -> ( f e. ( N ` { G } ) <-> E. k e. ( Base ` ( Scalar ` D ) ) f = ( k ( .s ` D ) G ) ) ) | 
						
							| 34 | 18 20 33 | syl2anc |  |-  ( ph -> ( f e. ( N ` { G } ) <-> E. k e. ( Base ` ( Scalar ` D ) ) f = ( k ( .s ` D ) G ) ) ) | 
						
							| 35 |  | eqid |  |-  ( Scalar ` U ) = ( Scalar ` U ) | 
						
							| 36 |  | eqid |  |-  ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) | 
						
							| 37 | 35 36 6 30 31 16 | ldualsbase |  |-  ( ph -> ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` U ) ) ) | 
						
							| 38 | 37 | rexeqdv |  |-  ( ph -> ( E. k e. ( Base ` ( Scalar ` D ) ) f = ( k ( .s ` D ) G ) <-> E. k e. ( Base ` ( Scalar ` U ) ) f = ( k ( .s ` D ) G ) ) ) | 
						
							| 39 | 34 38 | bitrd |  |-  ( ph -> ( f e. ( N ` { G } ) <-> E. k e. ( Base ` ( Scalar ` U ) ) f = ( k ( .s ` D ) G ) ) ) | 
						
							| 40 | 39 | biimpa |  |-  ( ( ph /\ f e. ( N ` { G } ) ) -> E. k e. ( Base ` ( Scalar ` U ) ) f = ( k ( .s ` D ) G ) ) | 
						
							| 41 | 1 3 8 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ph /\ f e. ( N ` { G } ) ) -> U e. LVec ) | 
						
							| 43 | 9 | adantr |  |-  ( ( ph /\ f e. ( N ` { G } ) ) -> G e. F ) | 
						
							| 44 | 35 36 4 5 6 32 42 43 28 | lkrss2N |  |-  ( ( ph /\ f e. ( N ` { G } ) ) -> ( ( L ` G ) C_ ( L ` f ) <-> E. k e. ( Base ` ( Scalar ` U ) ) f = ( k ( .s ` D ) G ) ) ) | 
						
							| 45 | 40 44 | mpbird |  |-  ( ( ph /\ f e. ( N ` { G } ) ) -> ( L ` G ) C_ ( L ` f ) ) | 
						
							| 46 | 1 3 15 2 | dochss |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( L ` f ) C_ ( Base ` U ) /\ ( L ` G ) C_ ( L ` f ) ) -> ( ._|_ ` ( L ` f ) ) C_ ( ._|_ ` ( L ` G ) ) ) | 
						
							| 47 | 14 29 45 46 | syl3anc |  |-  ( ( ph /\ f e. ( N ` { G } ) ) -> ( ._|_ ` ( L ` f ) ) C_ ( ._|_ ` ( L ` G ) ) ) | 
						
							| 48 | 47 | sseld |  |-  ( ( ph /\ f e. ( N ` { G } ) ) -> ( x e. ( ._|_ ` ( L ` f ) ) -> x e. ( ._|_ ` ( L ` G ) ) ) ) | 
						
							| 49 | 48 | ex |  |-  ( ph -> ( f e. ( N ` { G } ) -> ( x e. ( ._|_ ` ( L ` f ) ) -> x e. ( ._|_ ` ( L ` G ) ) ) ) ) | 
						
							| 50 | 13 49 | biimtrid |  |-  ( ph -> ( f e. R -> ( x e. ( ._|_ ` ( L ` f ) ) -> x e. ( ._|_ ` ( L ` G ) ) ) ) ) | 
						
							| 51 | 50 | rexlimdv |  |-  ( ph -> ( E. f e. R x e. ( ._|_ ` ( L ` f ) ) -> x e. ( ._|_ ` ( L ` G ) ) ) ) | 
						
							| 52 | 19 7 | lspsnid |  |-  ( ( D e. LMod /\ G e. ( Base ` D ) ) -> G e. ( N ` { G } ) ) | 
						
							| 53 | 18 20 52 | syl2anc |  |-  ( ph -> G e. ( N ` { G } ) ) | 
						
							| 54 | 53 11 | eleqtrrdi |  |-  ( ph -> G e. R ) | 
						
							| 55 |  | 2fveq3 |  |-  ( f = G -> ( ._|_ ` ( L ` f ) ) = ( ._|_ ` ( L ` G ) ) ) | 
						
							| 56 | 55 | eleq2d |  |-  ( f = G -> ( x e. ( ._|_ ` ( L ` f ) ) <-> x e. ( ._|_ ` ( L ` G ) ) ) ) | 
						
							| 57 | 56 | rspcev |  |-  ( ( G e. R /\ x e. ( ._|_ ` ( L ` G ) ) ) -> E. f e. R x e. ( ._|_ ` ( L ` f ) ) ) | 
						
							| 58 | 54 57 | sylan |  |-  ( ( ph /\ x e. ( ._|_ ` ( L ` G ) ) ) -> E. f e. R x e. ( ._|_ ` ( L ` f ) ) ) | 
						
							| 59 | 58 | ex |  |-  ( ph -> ( x e. ( ._|_ ` ( L ` G ) ) -> E. f e. R x e. ( ._|_ ` ( L ` f ) ) ) ) | 
						
							| 60 | 51 59 | impbid |  |-  ( ph -> ( E. f e. R x e. ( ._|_ ` ( L ` f ) ) <-> x e. ( ._|_ ` ( L ` G ) ) ) ) | 
						
							| 61 | 12 60 | bitrid |  |-  ( ph -> ( x e. U_ f e. R ( ._|_ ` ( L ` f ) ) <-> x e. ( ._|_ ` ( L ` G ) ) ) ) | 
						
							| 62 | 61 | eqrdv |  |-  ( ph -> U_ f e. R ( ._|_ ` ( L ` f ) ) = ( ._|_ ` ( L ` G ) ) ) | 
						
							| 63 | 10 62 | eqtrid |  |-  ( ph -> Q = ( ._|_ ` ( L ` G ) ) ) |