| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcfrvalsn.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcfrvalsn.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 3 |
|
lcfrvalsn.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
lcfrvalsn.f |
|- F = ( LFnl ` U ) |
| 5 |
|
lcfrvalsn.l |
|- L = ( LKer ` U ) |
| 6 |
|
lcfrvalsn.d |
|- D = ( LDual ` U ) |
| 7 |
|
lcfrvalsn.n |
|- N = ( LSpan ` D ) |
| 8 |
|
lcfrvalsn.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
lcfrvalsn.g |
|- ( ph -> G e. F ) |
| 10 |
|
lcfrvalsn.q |
|- Q = U_ f e. R ( ._|_ ` ( L ` f ) ) |
| 11 |
|
lcfrvalsn.r |
|- R = ( N ` { G } ) |
| 12 |
|
eliun |
|- ( x e. U_ f e. R ( ._|_ ` ( L ` f ) ) <-> E. f e. R x e. ( ._|_ ` ( L ` f ) ) ) |
| 13 |
11
|
eleq2i |
|- ( f e. R <-> f e. ( N ` { G } ) ) |
| 14 |
8
|
adantr |
|- ( ( ph /\ f e. ( N ` { G } ) ) -> ( K e. HL /\ W e. H ) ) |
| 15 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 16 |
1 3 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ f e. ( N ` { G } ) ) -> U e. LMod ) |
| 18 |
6 16
|
lduallmod |
|- ( ph -> D e. LMod ) |
| 19 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 20 |
4 6 19 16 9
|
ldualelvbase |
|- ( ph -> G e. ( Base ` D ) ) |
| 21 |
|
eqid |
|- ( LSubSp ` D ) = ( LSubSp ` D ) |
| 22 |
19 21 7
|
lspsncl |
|- ( ( D e. LMod /\ G e. ( Base ` D ) ) -> ( N ` { G } ) e. ( LSubSp ` D ) ) |
| 23 |
18 20 22
|
syl2anc |
|- ( ph -> ( N ` { G } ) e. ( LSubSp ` D ) ) |
| 24 |
19 21
|
lssel |
|- ( ( ( N ` { G } ) e. ( LSubSp ` D ) /\ f e. ( N ` { G } ) ) -> f e. ( Base ` D ) ) |
| 25 |
23 24
|
sylan |
|- ( ( ph /\ f e. ( N ` { G } ) ) -> f e. ( Base ` D ) ) |
| 26 |
4 6 19 16
|
ldualvbase |
|- ( ph -> ( Base ` D ) = F ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ f e. ( N ` { G } ) ) -> ( Base ` D ) = F ) |
| 28 |
25 27
|
eleqtrd |
|- ( ( ph /\ f e. ( N ` { G } ) ) -> f e. F ) |
| 29 |
15 4 5 17 28
|
lkrssv |
|- ( ( ph /\ f e. ( N ` { G } ) ) -> ( L ` f ) C_ ( Base ` U ) ) |
| 30 |
|
eqid |
|- ( Scalar ` D ) = ( Scalar ` D ) |
| 31 |
|
eqid |
|- ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` D ) ) |
| 32 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
| 33 |
30 31 19 32 7
|
ellspsn |
|- ( ( D e. LMod /\ G e. ( Base ` D ) ) -> ( f e. ( N ` { G } ) <-> E. k e. ( Base ` ( Scalar ` D ) ) f = ( k ( .s ` D ) G ) ) ) |
| 34 |
18 20 33
|
syl2anc |
|- ( ph -> ( f e. ( N ` { G } ) <-> E. k e. ( Base ` ( Scalar ` D ) ) f = ( k ( .s ` D ) G ) ) ) |
| 35 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
| 36 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
| 37 |
35 36 6 30 31 16
|
ldualsbase |
|- ( ph -> ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` U ) ) ) |
| 38 |
37
|
rexeqdv |
|- ( ph -> ( E. k e. ( Base ` ( Scalar ` D ) ) f = ( k ( .s ` D ) G ) <-> E. k e. ( Base ` ( Scalar ` U ) ) f = ( k ( .s ` D ) G ) ) ) |
| 39 |
34 38
|
bitrd |
|- ( ph -> ( f e. ( N ` { G } ) <-> E. k e. ( Base ` ( Scalar ` U ) ) f = ( k ( .s ` D ) G ) ) ) |
| 40 |
39
|
biimpa |
|- ( ( ph /\ f e. ( N ` { G } ) ) -> E. k e. ( Base ` ( Scalar ` U ) ) f = ( k ( .s ` D ) G ) ) |
| 41 |
1 3 8
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 42 |
41
|
adantr |
|- ( ( ph /\ f e. ( N ` { G } ) ) -> U e. LVec ) |
| 43 |
9
|
adantr |
|- ( ( ph /\ f e. ( N ` { G } ) ) -> G e. F ) |
| 44 |
35 36 4 5 6 32 42 43 28
|
lkrss2N |
|- ( ( ph /\ f e. ( N ` { G } ) ) -> ( ( L ` G ) C_ ( L ` f ) <-> E. k e. ( Base ` ( Scalar ` U ) ) f = ( k ( .s ` D ) G ) ) ) |
| 45 |
40 44
|
mpbird |
|- ( ( ph /\ f e. ( N ` { G } ) ) -> ( L ` G ) C_ ( L ` f ) ) |
| 46 |
1 3 15 2
|
dochss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( L ` f ) C_ ( Base ` U ) /\ ( L ` G ) C_ ( L ` f ) ) -> ( ._|_ ` ( L ` f ) ) C_ ( ._|_ ` ( L ` G ) ) ) |
| 47 |
14 29 45 46
|
syl3anc |
|- ( ( ph /\ f e. ( N ` { G } ) ) -> ( ._|_ ` ( L ` f ) ) C_ ( ._|_ ` ( L ` G ) ) ) |
| 48 |
47
|
sseld |
|- ( ( ph /\ f e. ( N ` { G } ) ) -> ( x e. ( ._|_ ` ( L ` f ) ) -> x e. ( ._|_ ` ( L ` G ) ) ) ) |
| 49 |
48
|
ex |
|- ( ph -> ( f e. ( N ` { G } ) -> ( x e. ( ._|_ ` ( L ` f ) ) -> x e. ( ._|_ ` ( L ` G ) ) ) ) ) |
| 50 |
13 49
|
biimtrid |
|- ( ph -> ( f e. R -> ( x e. ( ._|_ ` ( L ` f ) ) -> x e. ( ._|_ ` ( L ` G ) ) ) ) ) |
| 51 |
50
|
rexlimdv |
|- ( ph -> ( E. f e. R x e. ( ._|_ ` ( L ` f ) ) -> x e. ( ._|_ ` ( L ` G ) ) ) ) |
| 52 |
19 7
|
lspsnid |
|- ( ( D e. LMod /\ G e. ( Base ` D ) ) -> G e. ( N ` { G } ) ) |
| 53 |
18 20 52
|
syl2anc |
|- ( ph -> G e. ( N ` { G } ) ) |
| 54 |
53 11
|
eleqtrrdi |
|- ( ph -> G e. R ) |
| 55 |
|
2fveq3 |
|- ( f = G -> ( ._|_ ` ( L ` f ) ) = ( ._|_ ` ( L ` G ) ) ) |
| 56 |
55
|
eleq2d |
|- ( f = G -> ( x e. ( ._|_ ` ( L ` f ) ) <-> x e. ( ._|_ ` ( L ` G ) ) ) ) |
| 57 |
56
|
rspcev |
|- ( ( G e. R /\ x e. ( ._|_ ` ( L ` G ) ) ) -> E. f e. R x e. ( ._|_ ` ( L ` f ) ) ) |
| 58 |
54 57
|
sylan |
|- ( ( ph /\ x e. ( ._|_ ` ( L ` G ) ) ) -> E. f e. R x e. ( ._|_ ` ( L ` f ) ) ) |
| 59 |
58
|
ex |
|- ( ph -> ( x e. ( ._|_ ` ( L ` G ) ) -> E. f e. R x e. ( ._|_ ` ( L ` f ) ) ) ) |
| 60 |
51 59
|
impbid |
|- ( ph -> ( E. f e. R x e. ( ._|_ ` ( L ` f ) ) <-> x e. ( ._|_ ` ( L ` G ) ) ) ) |
| 61 |
12 60
|
bitrid |
|- ( ph -> ( x e. U_ f e. R ( ._|_ ` ( L ` f ) ) <-> x e. ( ._|_ ` ( L ` G ) ) ) ) |
| 62 |
61
|
eqrdv |
|- ( ph -> U_ f e. R ( ._|_ ` ( L ` f ) ) = ( ._|_ ` ( L ` G ) ) ) |
| 63 |
10 62
|
eqtrid |
|- ( ph -> Q = ( ._|_ ` ( L ` G ) ) ) |