Step |
Hyp |
Ref |
Expression |
1 |
|
hvmaplfl.h |
|- H = ( LHyp ` K ) |
2 |
|
hvmaplfl.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hvmaplfl.v |
|- V = ( Base ` U ) |
4 |
|
hvmaplfl.z |
|- .0. = ( 0g ` U ) |
5 |
|
hvmaplfl.f |
|- F = ( LFnl ` U ) |
6 |
|
hvmaplfl.m |
|- M = ( ( HVMap ` K ) ` W ) |
7 |
|
hvmaplfl.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
8 |
|
hvmaplfl.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
9 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
10 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
11 |
|
eqid |
|- ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) |
12 |
1 2 3 4 9 10 11 6 7 8
|
hvmapcl2 |
|- ( ph -> ( M ` X ) e. ( ( Base ` ( ( LCDual ` K ) ` W ) ) \ { ( 0g ` ( ( LCDual ` K ) ` W ) ) } ) ) |
13 |
12
|
eldifad |
|- ( ph -> ( M ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
14 |
1 9 10 2 5 7 13
|
lcdvbaselfl |
|- ( ph -> ( M ` X ) e. F ) |