Metamath Proof Explorer


Theorem hvmaplfl

Description: The vector to functional map value is a functional. (Contributed by NM, 28-Mar-2015)

Ref Expression
Hypotheses hvmaplfl.h
|- H = ( LHyp ` K )
hvmaplfl.u
|- U = ( ( DVecH ` K ) ` W )
hvmaplfl.v
|- V = ( Base ` U )
hvmaplfl.z
|- .0. = ( 0g ` U )
hvmaplfl.f
|- F = ( LFnl ` U )
hvmaplfl.m
|- M = ( ( HVMap ` K ) ` W )
hvmaplfl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hvmaplfl.x
|- ( ph -> X e. ( V \ { .0. } ) )
Assertion hvmaplfl
|- ( ph -> ( M ` X ) e. F )

Proof

Step Hyp Ref Expression
1 hvmaplfl.h
 |-  H = ( LHyp ` K )
2 hvmaplfl.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hvmaplfl.v
 |-  V = ( Base ` U )
4 hvmaplfl.z
 |-  .0. = ( 0g ` U )
5 hvmaplfl.f
 |-  F = ( LFnl ` U )
6 hvmaplfl.m
 |-  M = ( ( HVMap ` K ) ` W )
7 hvmaplfl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
8 hvmaplfl.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
9 eqid
 |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W )
10 eqid
 |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) )
11 eqid
 |-  ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) )
12 1 2 3 4 9 10 11 6 7 8 hvmapcl2
 |-  ( ph -> ( M ` X ) e. ( ( Base ` ( ( LCDual ` K ) ` W ) ) \ { ( 0g ` ( ( LCDual ` K ) ` W ) ) } ) )
13 12 eldifad
 |-  ( ph -> ( M ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) )
14 1 9 10 2 5 7 13 lcdvbaselfl
 |-  ( ph -> ( M ` X ) e. F )