| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hvmaplfl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hvmaplfl.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hvmaplfl.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
hvmaplfl.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 5 |
|
hvmaplfl.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
| 6 |
|
hvmaplfl.m |
⊢ 𝑀 = ( ( HVMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
hvmaplfl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
hvmaplfl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 9 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 12 |
1 2 3 4 9 10 11 6 7 8
|
hvmapcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ( ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ∖ { ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) } ) ) |
| 13 |
12
|
eldifad |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 14 |
1 9 10 2 5 7 13
|
lcdvbaselfl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) ∈ 𝐹 ) |