| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspindp5.v |
|- V = ( Base ` W ) |
| 2 |
|
lspindp5.n |
|- N = ( LSpan ` W ) |
| 3 |
|
lspindp5.w |
|- ( ph -> W e. LVec ) |
| 4 |
|
lspindp5.y |
|- ( ph -> X e. V ) |
| 5 |
|
lspindp5.x |
|- ( ph -> Y e. V ) |
| 6 |
|
lspindp5.u |
|- ( ph -> U e. V ) |
| 7 |
|
lspindp5.e |
|- ( ph -> Z e. ( N ` { X , U } ) ) |
| 8 |
|
lspindp5.m |
|- ( ph -> -. Z e. ( N ` { X , Y } ) ) |
| 9 |
|
ssel |
|- ( ( N ` { X , U } ) C_ ( N ` { X , Y } ) -> ( Z e. ( N ` { X , U } ) -> Z e. ( N ` { X , Y } ) ) ) |
| 10 |
7 9
|
syl5com |
|- ( ph -> ( ( N ` { X , U } ) C_ ( N ` { X , Y } ) -> Z e. ( N ` { X , Y } ) ) ) |
| 11 |
8 10
|
mtod |
|- ( ph -> -. ( N ` { X , U } ) C_ ( N ` { X , Y } ) ) |
| 12 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
| 13 |
3 12
|
syl |
|- ( ph -> W e. LMod ) |
| 14 |
|
prssi |
|- ( ( X e. V /\ Y e. V ) -> { X , Y } C_ V ) |
| 15 |
4 5 14
|
syl2anc |
|- ( ph -> { X , Y } C_ V ) |
| 16 |
|
snsspr1 |
|- { X } C_ { X , Y } |
| 17 |
16
|
a1i |
|- ( ph -> { X } C_ { X , Y } ) |
| 18 |
1 2
|
lspss |
|- ( ( W e. LMod /\ { X , Y } C_ V /\ { X } C_ { X , Y } ) -> ( N ` { X } ) C_ ( N ` { X , Y } ) ) |
| 19 |
13 15 17 18
|
syl3anc |
|- ( ph -> ( N ` { X } ) C_ ( N ` { X , Y } ) ) |
| 20 |
19
|
biantrurd |
|- ( ph -> ( ( N ` { U } ) C_ ( N ` { X , Y } ) <-> ( ( N ` { X } ) C_ ( N ` { X , Y } ) /\ ( N ` { U } ) C_ ( N ` { X , Y } ) ) ) ) |
| 21 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 22 |
21
|
lsssssubg |
|- ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
| 23 |
13 22
|
syl |
|- ( ph -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
| 24 |
1 21 2
|
lspsncl |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 25 |
13 4 24
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 26 |
23 25
|
sseldd |
|- ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 27 |
1 21 2
|
lspsncl |
|- ( ( W e. LMod /\ U e. V ) -> ( N ` { U } ) e. ( LSubSp ` W ) ) |
| 28 |
13 6 27
|
syl2anc |
|- ( ph -> ( N ` { U } ) e. ( LSubSp ` W ) ) |
| 29 |
23 28
|
sseldd |
|- ( ph -> ( N ` { U } ) e. ( SubGrp ` W ) ) |
| 30 |
1 21 2 13 4 5
|
lspprcl |
|- ( ph -> ( N ` { X , Y } ) e. ( LSubSp ` W ) ) |
| 31 |
23 30
|
sseldd |
|- ( ph -> ( N ` { X , Y } ) e. ( SubGrp ` W ) ) |
| 32 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
| 33 |
32
|
lsmlub |
|- ( ( ( N ` { X } ) e. ( SubGrp ` W ) /\ ( N ` { U } ) e. ( SubGrp ` W ) /\ ( N ` { X , Y } ) e. ( SubGrp ` W ) ) -> ( ( ( N ` { X } ) C_ ( N ` { X , Y } ) /\ ( N ` { U } ) C_ ( N ` { X , Y } ) ) <-> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { U } ) ) C_ ( N ` { X , Y } ) ) ) |
| 34 |
26 29 31 33
|
syl3anc |
|- ( ph -> ( ( ( N ` { X } ) C_ ( N ` { X , Y } ) /\ ( N ` { U } ) C_ ( N ` { X , Y } ) ) <-> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { U } ) ) C_ ( N ` { X , Y } ) ) ) |
| 35 |
20 34
|
bitrd |
|- ( ph -> ( ( N ` { U } ) C_ ( N ` { X , Y } ) <-> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { U } ) ) C_ ( N ` { X , Y } ) ) ) |
| 36 |
1 21 2 13 30 6
|
ellspsn5b |
|- ( ph -> ( U e. ( N ` { X , Y } ) <-> ( N ` { U } ) C_ ( N ` { X , Y } ) ) ) |
| 37 |
1 2 32 13 4 6
|
lsmpr |
|- ( ph -> ( N ` { X , U } ) = ( ( N ` { X } ) ( LSSum ` W ) ( N ` { U } ) ) ) |
| 38 |
37
|
sseq1d |
|- ( ph -> ( ( N ` { X , U } ) C_ ( N ` { X , Y } ) <-> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { U } ) ) C_ ( N ` { X , Y } ) ) ) |
| 39 |
35 36 38
|
3bitr4d |
|- ( ph -> ( U e. ( N ` { X , Y } ) <-> ( N ` { X , U } ) C_ ( N ` { X , Y } ) ) ) |
| 40 |
11 39
|
mtbird |
|- ( ph -> -. U e. ( N ` { X , Y } ) ) |