Step |
Hyp |
Ref |
Expression |
1 |
|
lspindp5.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lspindp5.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
3 |
|
lspindp5.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
4 |
|
lspindp5.y |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
5 |
|
lspindp5.x |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
6 |
|
lspindp5.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
7 |
|
lspindp5.e |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑈 } ) ) |
8 |
|
lspindp5.m |
⊢ ( 𝜑 → ¬ 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
9 |
|
ssel |
⊢ ( ( 𝑁 ‘ { 𝑋 , 𝑈 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) → ( 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑈 } ) → 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
10 |
7 9
|
syl5com |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 , 𝑈 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) → 𝑍 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
11 |
8 10
|
mtod |
⊢ ( 𝜑 → ¬ ( 𝑁 ‘ { 𝑋 , 𝑈 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
12 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
14 |
|
prssi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
15 |
4 5 14
|
syl2anc |
⊢ ( 𝜑 → { 𝑋 , 𝑌 } ⊆ 𝑉 ) |
16 |
|
snsspr1 |
⊢ { 𝑋 } ⊆ { 𝑋 , 𝑌 } |
17 |
16
|
a1i |
⊢ ( 𝜑 → { 𝑋 } ⊆ { 𝑋 , 𝑌 } ) |
18 |
1 2
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ { 𝑋 , 𝑌 } ⊆ 𝑉 ∧ { 𝑋 } ⊆ { 𝑋 , 𝑌 } ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
19 |
13 15 17 18
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
20 |
19
|
biantrurd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑈 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑈 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) ) |
21 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
22 |
21
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
23 |
13 22
|
syl |
⊢ ( 𝜑 → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
24 |
1 21 2
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
25 |
13 4 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
26 |
23 25
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
27 |
1 21 2
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑈 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
28 |
13 6 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑈 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
29 |
23 28
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑈 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
30 |
1 21 2 13 4 5
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
31 |
23 30
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
32 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
33 |
32
|
lsmlub |
⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑈 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑈 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ↔ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑈 } ) ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
34 |
26 29 31 33
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ { 𝑋 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑈 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ↔ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑈 } ) ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
35 |
20 34
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑈 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑈 } ) ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
36 |
1 21 2 13 30 6
|
lspsnel5 |
⊢ ( 𝜑 → ( 𝑈 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑈 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
37 |
1 2 32 13 4 6
|
lsmpr |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑈 } ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑈 } ) ) ) |
38 |
37
|
sseq1d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 , 𝑈 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑈 } ) ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
39 |
35 36 38
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑈 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑋 , 𝑈 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
40 |
11 39
|
mtbird |
⊢ ( 𝜑 → ¬ 𝑈 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |