Metamath Proof Explorer


Theorem hdmapffval

Description: Map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015)

Ref Expression
Hypothesis hdmapval.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion hdmapffval ( 𝐾𝑋 → ( HDMap ‘ 𝐾 ) = ( 𝑤𝐻 ↦ { 𝑎[ ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) } ) )

Proof

Step Hyp Ref Expression
1 hdmapval.h 𝐻 = ( LHyp ‘ 𝐾 )
2 elex ( 𝐾𝑋𝐾 ∈ V )
3 fveq2 ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = ( LHyp ‘ 𝐾 ) )
4 3 1 eqtr4di ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = 𝐻 )
5 fveq2 ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) )
6 5 reseq2d ( 𝑘 = 𝐾 → ( I ↾ ( Base ‘ 𝑘 ) ) = ( I ↾ ( Base ‘ 𝐾 ) ) )
7 fveq2 ( 𝑘 = 𝐾 → ( LTrn ‘ 𝑘 ) = ( LTrn ‘ 𝐾 ) )
8 7 fveq1d ( 𝑘 = 𝐾 → ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) )
9 8 reseq2d ( 𝑘 = 𝐾 → ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) = ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) )
10 6 9 opeq12d ( 𝑘 = 𝐾 → ⟨ ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) ⟩ = ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ )
11 fveq2 ( 𝑘 = 𝐾 → ( DVecH ‘ 𝑘 ) = ( DVecH ‘ 𝐾 ) )
12 11 fveq1d ( 𝑘 = 𝐾 → ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) )
13 fveq2 ( 𝑘 = 𝐾 → ( HDMap1 ‘ 𝑘 ) = ( HDMap1 ‘ 𝐾 ) )
14 13 fveq1d ( 𝑘 = 𝐾 → ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) = ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) )
15 fveq2 ( 𝑘 = 𝐾 → ( LCDual ‘ 𝑘 ) = ( LCDual ‘ 𝐾 ) )
16 15 fveq1d ( 𝑘 = 𝐾 → ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) )
17 16 fveq2d ( 𝑘 = 𝐾 → ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) )
18 fveq2 ( 𝑘 = 𝐾 → ( HVMap ‘ 𝑘 ) = ( HVMap ‘ 𝐾 ) )
19 18 fveq1d ( 𝑘 = 𝐾 → ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) = ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) )
20 19 fveq1d ( 𝑘 = 𝐾 → ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) = ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) )
21 20 oteq2d ( 𝑘 = 𝐾 → ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ = ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ )
22 21 fveq2d ( 𝑘 = 𝐾 → ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) = ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) )
23 22 oteq2d ( 𝑘 = 𝐾 → ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ = ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ )
24 23 fveq2d ( 𝑘 = 𝐾 → ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) )
25 24 eqeq2d ( 𝑘 = 𝐾 → ( 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ↔ 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) )
26 25 imbi2d ( 𝑘 = 𝐾 → ( ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ↔ ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) )
27 26 ralbidv ( 𝑘 = 𝐾 → ( ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ↔ ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) )
28 17 27 riotaeqbidv ( 𝑘 = 𝐾 → ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) = ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) )
29 28 mpteq2dv ( 𝑘 = 𝐾 → ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) = ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) )
30 29 eleq2d ( 𝑘 = 𝐾 → ( 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ↔ 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ) )
31 14 30 sbceqbid ( 𝑘 = 𝐾 → ( [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ↔ [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ) )
32 31 sbcbidv ( 𝑘 = 𝐾 → ( [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ↔ [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ) )
33 12 32 sbceqbid ( 𝑘 = 𝐾 → ( [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ↔ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ) )
34 10 33 sbceqbid ( 𝑘 = 𝐾 → ( [ ⟨ ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ↔ [ ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) ) )
35 34 abbidv ( 𝑘 = 𝐾 → { 𝑎[ ⟨ ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) } = { 𝑎[ ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) } )
36 4 35 mpteq12dv ( 𝑘 = 𝐾 → ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎[ ⟨ ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) } ) = ( 𝑤𝐻 ↦ { 𝑎[ ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) } ) )
37 df-hdmap HDMap = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑎[ ⟨ ( I ↾ ( Base ‘ 𝑘 ) ) , ( I ↾ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝑘 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝑘 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) } ) )
38 36 37 1 mptfvmpt ( 𝐾 ∈ V → ( HDMap ‘ 𝐾 ) = ( 𝑤𝐻 ↦ { 𝑎[ ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) } ) )
39 2 38 syl ( 𝐾𝑋 → ( HDMap ‘ 𝐾 ) = ( 𝑤𝐻 ↦ { 𝑎[ ⟨ ( I ↾ ( Base ‘ 𝐾 ) ) , ( I ↾ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ / 𝑒 ] [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ 𝑢 ) / 𝑣 ] [ ( ( HDMap1 ‘ 𝐾 ) ‘ 𝑤 ) / 𝑖 ] 𝑎 ∈ ( 𝑡𝑣 ↦ ( 𝑦 ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ∀ 𝑧𝑣 ( ¬ 𝑧 ∈ ( ( ( LSpan ‘ 𝑢 ) ‘ { 𝑒 } ) ∪ ( ( LSpan ‘ 𝑢 ) ‘ { 𝑡 } ) ) → 𝑦 = ( 𝑖 ‘ ⟨ 𝑧 , ( 𝑖 ‘ ⟨ 𝑒 , ( ( ( HVMap ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑒 ) , 𝑧 ⟩ ) , 𝑡 ⟩ ) ) ) ) } ) )