Step |
Hyp |
Ref |
Expression |
0 |
|
chdma |
|- HDMap |
1 |
|
vk |
|- k |
2 |
|
cvv |
|- _V |
3 |
|
vw |
|- w |
4 |
|
clh |
|- LHyp |
5 |
1
|
cv |
|- k |
6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
7 |
|
va |
|- a |
8 |
|
cid |
|- _I |
9 |
|
cbs |
|- Base |
10 |
5 9
|
cfv |
|- ( Base ` k ) |
11 |
8 10
|
cres |
|- ( _I |` ( Base ` k ) ) |
12 |
|
cltrn |
|- LTrn |
13 |
5 12
|
cfv |
|- ( LTrn ` k ) |
14 |
3
|
cv |
|- w |
15 |
14 13
|
cfv |
|- ( ( LTrn ` k ) ` w ) |
16 |
8 15
|
cres |
|- ( _I |` ( ( LTrn ` k ) ` w ) ) |
17 |
11 16
|
cop |
|- <. ( _I |` ( Base ` k ) ) , ( _I |` ( ( LTrn ` k ) ` w ) ) >. |
18 |
|
ve |
|- e |
19 |
|
cdvh |
|- DVecH |
20 |
5 19
|
cfv |
|- ( DVecH ` k ) |
21 |
14 20
|
cfv |
|- ( ( DVecH ` k ) ` w ) |
22 |
|
vu |
|- u |
23 |
22
|
cv |
|- u |
24 |
23 9
|
cfv |
|- ( Base ` u ) |
25 |
|
vv |
|- v |
26 |
|
chdma1 |
|- HDMap1 |
27 |
5 26
|
cfv |
|- ( HDMap1 ` k ) |
28 |
14 27
|
cfv |
|- ( ( HDMap1 ` k ) ` w ) |
29 |
|
vi |
|- i |
30 |
7
|
cv |
|- a |
31 |
|
vt |
|- t |
32 |
25
|
cv |
|- v |
33 |
|
vy |
|- y |
34 |
|
clcd |
|- LCDual |
35 |
5 34
|
cfv |
|- ( LCDual ` k ) |
36 |
14 35
|
cfv |
|- ( ( LCDual ` k ) ` w ) |
37 |
36 9
|
cfv |
|- ( Base ` ( ( LCDual ` k ) ` w ) ) |
38 |
|
vz |
|- z |
39 |
38
|
cv |
|- z |
40 |
|
clspn |
|- LSpan |
41 |
23 40
|
cfv |
|- ( LSpan ` u ) |
42 |
18
|
cv |
|- e |
43 |
42
|
csn |
|- { e } |
44 |
43 41
|
cfv |
|- ( ( LSpan ` u ) ` { e } ) |
45 |
31
|
cv |
|- t |
46 |
45
|
csn |
|- { t } |
47 |
46 41
|
cfv |
|- ( ( LSpan ` u ) ` { t } ) |
48 |
44 47
|
cun |
|- ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) |
49 |
39 48
|
wcel |
|- z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) |
50 |
49
|
wn |
|- -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) |
51 |
33
|
cv |
|- y |
52 |
29
|
cv |
|- i |
53 |
|
chvm |
|- HVMap |
54 |
5 53
|
cfv |
|- ( HVMap ` k ) |
55 |
14 54
|
cfv |
|- ( ( HVMap ` k ) ` w ) |
56 |
42 55
|
cfv |
|- ( ( ( HVMap ` k ) ` w ) ` e ) |
57 |
42 56 39
|
cotp |
|- <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. |
58 |
57 52
|
cfv |
|- ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) |
59 |
39 58 45
|
cotp |
|- <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. |
60 |
59 52
|
cfv |
|- ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) |
61 |
51 60
|
wceq |
|- y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) |
62 |
50 61
|
wi |
|- ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) ) |
63 |
62 38 32
|
wral |
|- A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) ) |
64 |
63 33 37
|
crio |
|- ( iota_ y e. ( Base ` ( ( LCDual ` k ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) ) ) |
65 |
31 32 64
|
cmpt |
|- ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` k ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) |
66 |
30 65
|
wcel |
|- a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` k ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) |
67 |
66 29 28
|
wsbc |
|- [. ( ( HDMap1 ` k ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` k ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) |
68 |
67 25 24
|
wsbc |
|- [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` k ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` k ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) |
69 |
68 22 21
|
wsbc |
|- [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` k ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` k ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) |
70 |
69 18 17
|
wsbc |
|- [. <. ( _I |` ( Base ` k ) ) , ( _I |` ( ( LTrn ` k ) ` w ) ) >. / e ]. [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` k ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` k ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) |
71 |
70 7
|
cab |
|- { a | [. <. ( _I |` ( Base ` k ) ) , ( _I |` ( ( LTrn ` k ) ` w ) ) >. / e ]. [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` k ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` k ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) } |
72 |
3 6 71
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> { a | [. <. ( _I |` ( Base ` k ) ) , ( _I |` ( ( LTrn ` k ) ` w ) ) >. / e ]. [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` k ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` k ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) } ) |
73 |
1 2 72
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. <. ( _I |` ( Base ` k ) ) , ( _I |` ( ( LTrn ` k ) ` w ) ) >. / e ]. [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` k ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` k ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) } ) ) |
74 |
0 73
|
wceq |
|- HDMap = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> { a | [. <. ( _I |` ( Base ` k ) ) , ( _I |` ( ( LTrn ` k ) ` w ) ) >. / e ]. [. ( ( DVecH ` k ) ` w ) / u ]. [. ( Base ` u ) / v ]. [. ( ( HDMap1 ` k ) ` w ) / i ]. a e. ( t e. v |-> ( iota_ y e. ( Base ` ( ( LCDual ` k ) ` w ) ) A. z e. v ( -. z e. ( ( ( LSpan ` u ) ` { e } ) u. ( ( LSpan ` u ) ` { t } ) ) -> y = ( i ` <. z , ( i ` <. e , ( ( ( HVMap ` k ) ` w ) ` e ) , z >. ) , t >. ) ) ) ) } ) ) |