Metamath Proof Explorer


Definition df-hdmap

Description: Define map from vectors to functionals in the closed kernel dual space. See hdmapfval description for more details. (Contributed by NM, 15-May-2015)

Ref Expression
Assertion df-hdmap HDMap = k V w LHyp k a | [˙ I Base k I LTrn k w / e]˙ [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t

Detailed syntax breakdown

Step Hyp Ref Expression
0 chdma class HDMap
1 vk setvar k
2 cvv class V
3 vw setvar w
4 clh class LHyp
5 1 cv setvar k
6 5 4 cfv class LHyp k
7 va setvar a
8 cid class I
9 cbs class Base
10 5 9 cfv class Base k
11 8 10 cres class I Base k
12 cltrn class LTrn
13 5 12 cfv class LTrn k
14 3 cv setvar w
15 14 13 cfv class LTrn k w
16 8 15 cres class I LTrn k w
17 11 16 cop class I Base k I LTrn k w
18 ve setvar e
19 cdvh class DVecH
20 5 19 cfv class DVecH k
21 14 20 cfv class DVecH k w
22 vu setvar u
23 22 cv setvar u
24 23 9 cfv class Base u
25 vv setvar v
26 chdma1 class HDMap1
27 5 26 cfv class HDMap1 k
28 14 27 cfv class HDMap1 k w
29 vi setvar i
30 7 cv setvar a
31 vt setvar t
32 25 cv setvar v
33 vy setvar y
34 clcd class LCDual
35 5 34 cfv class LCDual k
36 14 35 cfv class LCDual k w
37 36 9 cfv class Base LCDual k w
38 vz setvar z
39 38 cv setvar z
40 clspn class LSpan
41 23 40 cfv class LSpan u
42 18 cv setvar e
43 42 csn class e
44 43 41 cfv class LSpan u e
45 31 cv setvar t
46 45 csn class t
47 46 41 cfv class LSpan u t
48 44 47 cun class LSpan u e LSpan u t
49 39 48 wcel wff z LSpan u e LSpan u t
50 49 wn wff ¬ z LSpan u e LSpan u t
51 33 cv setvar y
52 29 cv setvar i
53 chvm class HVMap
54 5 53 cfv class HVMap k
55 14 54 cfv class HVMap k w
56 42 55 cfv class HVMap k w e
57 42 56 39 cotp class e HVMap k w e z
58 57 52 cfv class i e HVMap k w e z
59 39 58 45 cotp class z i e HVMap k w e z t
60 59 52 cfv class i z i e HVMap k w e z t
61 51 60 wceq wff y = i z i e HVMap k w e z t
62 50 61 wi wff ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t
63 62 38 32 wral wff z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t
64 63 33 37 crio class ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t
65 31 32 64 cmpt class t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t
66 30 65 wcel wff a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t
67 66 29 28 wsbc wff [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t
68 67 25 24 wsbc wff [˙Base u / v]˙ [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t
69 68 22 21 wsbc wff [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t
70 69 18 17 wsbc wff [˙ I Base k I LTrn k w / e]˙ [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t
71 70 7 cab class a | [˙ I Base k I LTrn k w / e]˙ [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t
72 3 6 71 cmpt class w LHyp k a | [˙ I Base k I LTrn k w / e]˙ [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t
73 1 2 72 cmpt class k V w LHyp k a | [˙ I Base k I LTrn k w / e]˙ [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t
74 0 73 wceq wff HDMap = k V w LHyp k a | [˙ I Base k I LTrn k w / e]˙ [˙ DVecH k w / u]˙ [˙Base u / v]˙ [˙ HDMap1 k w / i]˙ a t v ι y Base LCDual k w | z v ¬ z LSpan u e LSpan u t y = i z i e HVMap k w e z t