Metamath Proof Explorer


Definition df-hgmap

Description: Define map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015)

Ref Expression
Assertion df-hgmap HGMap=kVwLHypka|[˙DVecHkw/u]˙[˙BaseScalaru/b]˙[˙HDMapkw/m]˙axbιyb|vBaseumxuv=yLCDualkwmv

Detailed syntax breakdown

Step Hyp Ref Expression
0 chg classHGMap
1 vk setvark
2 cvv classV
3 vw setvarw
4 clh classLHyp
5 1 cv setvark
6 5 4 cfv classLHypk
7 va setvara
8 cdvh classDVecH
9 5 8 cfv classDVecHk
10 3 cv setvarw
11 10 9 cfv classDVecHkw
12 vu setvaru
13 cbs classBase
14 csca classScalar
15 12 cv setvaru
16 15 14 cfv classScalaru
17 16 13 cfv classBaseScalaru
18 vb setvarb
19 chdma classHDMap
20 5 19 cfv classHDMapk
21 10 20 cfv classHDMapkw
22 vm setvarm
23 7 cv setvara
24 vx setvarx
25 18 cv setvarb
26 vy setvary
27 vv setvarv
28 15 13 cfv classBaseu
29 22 cv setvarm
30 24 cv setvarx
31 cvsca class𝑠
32 15 31 cfv classu
33 27 cv setvarv
34 30 33 32 co classxuv
35 34 29 cfv classmxuv
36 26 cv setvary
37 clcd classLCDual
38 5 37 cfv classLCDualk
39 10 38 cfv classLCDualkw
40 39 31 cfv classLCDualkw
41 33 29 cfv classmv
42 36 41 40 co classyLCDualkwmv
43 35 42 wceq wffmxuv=yLCDualkwmv
44 43 27 28 wral wffvBaseumxuv=yLCDualkwmv
45 44 26 25 crio classιyb|vBaseumxuv=yLCDualkwmv
46 24 25 45 cmpt classxbιyb|vBaseumxuv=yLCDualkwmv
47 23 46 wcel wffaxbιyb|vBaseumxuv=yLCDualkwmv
48 47 22 21 wsbc wff[˙HDMapkw/m]˙axbιyb|vBaseumxuv=yLCDualkwmv
49 48 18 17 wsbc wff[˙BaseScalaru/b]˙[˙HDMapkw/m]˙axbιyb|vBaseumxuv=yLCDualkwmv
50 49 12 11 wsbc wff[˙DVecHkw/u]˙[˙BaseScalaru/b]˙[˙HDMapkw/m]˙axbιyb|vBaseumxuv=yLCDualkwmv
51 50 7 cab classa|[˙DVecHkw/u]˙[˙BaseScalaru/b]˙[˙HDMapkw/m]˙axbιyb|vBaseumxuv=yLCDualkwmv
52 3 6 51 cmpt classwLHypka|[˙DVecHkw/u]˙[˙BaseScalaru/b]˙[˙HDMapkw/m]˙axbιyb|vBaseumxuv=yLCDualkwmv
53 1 2 52 cmpt classkVwLHypka|[˙DVecHkw/u]˙[˙BaseScalaru/b]˙[˙HDMapkw/m]˙axbιyb|vBaseumxuv=yLCDualkwmv
54 0 53 wceq wffHGMap=kVwLHypka|[˙DVecHkw/u]˙[˙BaseScalaru/b]˙[˙HDMapkw/m]˙axbιyb|vBaseumxuv=yLCDualkwmv