Metamath Proof Explorer


Definition df-hgmap

Description: Define map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015)

Ref Expression
Assertion df-hgmap HGMap = k V w LHyp k a | [˙ DVecH k w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap k w / m]˙ a x b ι y b | v Base u m x u v = y LCDual k w m v

Detailed syntax breakdown

Step Hyp Ref Expression
0 chg class HGMap
1 vk setvar k
2 cvv class V
3 vw setvar w
4 clh class LHyp
5 1 cv setvar k
6 5 4 cfv class LHyp k
7 va setvar a
8 cdvh class DVecH
9 5 8 cfv class DVecH k
10 3 cv setvar w
11 10 9 cfv class DVecH k w
12 vu setvar u
13 cbs class Base
14 csca class Scalar
15 12 cv setvar u
16 15 14 cfv class Scalar u
17 16 13 cfv class Base Scalar u
18 vb setvar b
19 chdma class HDMap
20 5 19 cfv class HDMap k
21 10 20 cfv class HDMap k w
22 vm setvar m
23 7 cv setvar a
24 vx setvar x
25 18 cv setvar b
26 vy setvar y
27 vv setvar v
28 15 13 cfv class Base u
29 22 cv setvar m
30 24 cv setvar x
31 cvsca class 𝑠
32 15 31 cfv class u
33 27 cv setvar v
34 30 33 32 co class x u v
35 34 29 cfv class m x u v
36 26 cv setvar y
37 clcd class LCDual
38 5 37 cfv class LCDual k
39 10 38 cfv class LCDual k w
40 39 31 cfv class LCDual k w
41 33 29 cfv class m v
42 36 41 40 co class y LCDual k w m v
43 35 42 wceq wff m x u v = y LCDual k w m v
44 43 27 28 wral wff v Base u m x u v = y LCDual k w m v
45 44 26 25 crio class ι y b | v Base u m x u v = y LCDual k w m v
46 24 25 45 cmpt class x b ι y b | v Base u m x u v = y LCDual k w m v
47 23 46 wcel wff a x b ι y b | v Base u m x u v = y LCDual k w m v
48 47 22 21 wsbc wff [˙ HDMap k w / m]˙ a x b ι y b | v Base u m x u v = y LCDual k w m v
49 48 18 17 wsbc wff [˙Base Scalar u / b]˙ [˙ HDMap k w / m]˙ a x b ι y b | v Base u m x u v = y LCDual k w m v
50 49 12 11 wsbc wff [˙ DVecH k w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap k w / m]˙ a x b ι y b | v Base u m x u v = y LCDual k w m v
51 50 7 cab class a | [˙ DVecH k w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap k w / m]˙ a x b ι y b | v Base u m x u v = y LCDual k w m v
52 3 6 51 cmpt class w LHyp k a | [˙ DVecH k w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap k w / m]˙ a x b ι y b | v Base u m x u v = y LCDual k w m v
53 1 2 52 cmpt class k V w LHyp k a | [˙ DVecH k w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap k w / m]˙ a x b ι y b | v Base u m x u v = y LCDual k w m v
54 0 53 wceq wff HGMap = k V w LHyp k a | [˙ DVecH k w / u]˙ [˙Base Scalar u / b]˙ [˙ HDMap k w / m]˙ a x b ι y b | v Base u m x u v = y LCDual k w m v