| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmapval.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hgmapfval.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hgmapfval.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hgmapfval.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 5 |  | hgmapfval.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | hgmapfval.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | hgmapfval.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hgmapfval.s | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 9 |  | hgmapfval.m | ⊢ 𝑀  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hgmapfval.i | ⊢ 𝐼  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hgmapfval.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  𝑌  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 | 1 | hgmapffval | ⊢ ( 𝐾  ∈  𝑌  →  ( HGMap ‘ 𝐾 )  =  ( 𝑤  ∈  𝐻  ↦  { 𝑎  ∣  [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ) | 
						
							| 13 | 12 | fveq1d | ⊢ ( 𝐾  ∈  𝑌  →  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( 𝑤  ∈  𝐻  ↦  { 𝑎  ∣  [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ‘ 𝑊 ) ) | 
						
							| 14 | 10 13 | eqtrid | ⊢ ( 𝐾  ∈  𝑌  →  𝐼  =  ( ( 𝑤  ∈  𝐻  ↦  { 𝑎  ∣  [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ‘ 𝑊 ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 16 | 15 2 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  =  𝑈 ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 18 | 17 9 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  =  𝑀 ) | 
						
							| 19 |  | 2fveq3 | ⊢ ( 𝑤  =  𝑊  →  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) )  =  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 20 | 19 | oveqd | ⊢ ( 𝑤  =  𝑊  →  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) | 
						
							| 21 | 20 | eqeq2d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) )  ↔  ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) | 
						
							| 22 | 21 | ralbidv | ⊢ ( 𝑤  =  𝑊  →  ( ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) )  ↔  ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) | 
						
							| 23 | 22 | riotabidv | ⊢ ( 𝑤  =  𝑊  →  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) )  =  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) | 
						
							| 24 | 23 | mpteq2dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  =  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) | 
						
							| 25 | 24 | eleq2d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  ↔  𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) | 
						
							| 26 | 18 25 | sbceqbid | ⊢ ( 𝑤  =  𝑊  →  ( [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  ↔  [ 𝑀  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) | 
						
							| 27 | 26 | sbcbidv | ⊢ ( 𝑤  =  𝑊  →  ( [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  ↔  [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ 𝑀  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) | 
						
							| 28 | 16 27 | sbceqbid | ⊢ ( 𝑤  =  𝑊  →  ( [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  ↔  [ 𝑈  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ 𝑀  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) | 
						
							| 29 | 2 | fvexi | ⊢ 𝑈  ∈  V | 
						
							| 30 |  | fvex | ⊢ ( Base ‘ ( Scalar ‘ 𝑢 ) )  ∈  V | 
						
							| 31 | 9 | fvexi | ⊢ 𝑀  ∈  V | 
						
							| 32 |  | simp2 | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  ( Base ‘ ( Scalar ‘ 𝑢 ) )  ∧  𝑚  =  𝑀 )  →  𝑏  =  ( Base ‘ ( Scalar ‘ 𝑢 ) ) ) | 
						
							| 33 |  | simp1 | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  ( Base ‘ ( Scalar ‘ 𝑢 ) )  ∧  𝑚  =  𝑀 )  →  𝑢  =  𝑈 ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  ( Base ‘ ( Scalar ‘ 𝑢 ) )  ∧  𝑚  =  𝑀 )  →  ( Scalar ‘ 𝑢 )  =  ( Scalar ‘ 𝑈 ) ) | 
						
							| 35 | 34 5 | eqtr4di | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  ( Base ‘ ( Scalar ‘ 𝑢 ) )  ∧  𝑚  =  𝑀 )  →  ( Scalar ‘ 𝑢 )  =  𝑅 ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  ( Base ‘ ( Scalar ‘ 𝑢 ) )  ∧  𝑚  =  𝑀 )  →  ( Base ‘ ( Scalar ‘ 𝑢 ) )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 37 | 32 36 | eqtrd | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  ( Base ‘ ( Scalar ‘ 𝑢 ) )  ∧  𝑚  =  𝑀 )  →  𝑏  =  ( Base ‘ 𝑅 ) ) | 
						
							| 38 | 37 6 | eqtr4di | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  ( Base ‘ ( Scalar ‘ 𝑢 ) )  ∧  𝑚  =  𝑀 )  →  𝑏  =  𝐵 ) | 
						
							| 39 |  | simp2 | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  𝑏  =  𝐵 ) | 
						
							| 40 |  | simp1 | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  𝑢  =  𝑈 ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  ( Base ‘ 𝑢 )  =  ( Base ‘ 𝑈 ) ) | 
						
							| 42 | 41 3 | eqtr4di | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  ( Base ‘ 𝑢 )  =  𝑉 ) | 
						
							| 43 |  | simp3 | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  𝑚  =  𝑀 ) | 
						
							| 44 | 40 | fveq2d | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  (  ·𝑠  ‘ 𝑢 )  =  (  ·𝑠  ‘ 𝑈 ) ) | 
						
							| 45 | 44 4 | eqtr4di | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  (  ·𝑠  ‘ 𝑢 )  =   ·  ) | 
						
							| 46 | 45 | oveqd | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 )  =  ( 𝑥  ·  𝑣 ) ) | 
						
							| 47 | 43 46 | fveq12d | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑀 ‘ ( 𝑥  ·  𝑣 ) ) ) | 
						
							| 48 |  | eqidd | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 49 | 48 7 | eqtr4di | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  𝐶 ) | 
						
							| 50 | 49 | fveq2d | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  (  ·𝑠  ‘ 𝐶 ) ) | 
						
							| 51 | 50 8 | eqtr4di | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =   ∙  ) | 
						
							| 52 |  | eqidd | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  𝑦  =  𝑦 ) | 
						
							| 53 | 43 | fveq1d | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  ( 𝑚 ‘ 𝑣 )  =  ( 𝑀 ‘ 𝑣 ) ) | 
						
							| 54 | 51 52 53 | oveq123d | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) )  =  ( 𝑦  ∙  ( 𝑀 ‘ 𝑣 ) ) ) | 
						
							| 55 | 47 54 | eqeq12d | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  ( ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) )  ↔  ( 𝑀 ‘ ( 𝑥  ·  𝑣 ) )  =  ( 𝑦  ∙  ( 𝑀 ‘ 𝑣 ) ) ) ) | 
						
							| 56 | 42 55 | raleqbidv | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  ( ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) )  ↔  ∀ 𝑣  ∈  𝑉 ( 𝑀 ‘ ( 𝑥  ·  𝑣 ) )  =  ( 𝑦  ∙  ( 𝑀 ‘ 𝑣 ) ) ) ) | 
						
							| 57 | 39 56 | riotaeqbidv | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) )  =  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑣  ∈  𝑉 ( 𝑀 ‘ ( 𝑥  ·  𝑣 ) )  =  ( 𝑦  ∙  ( 𝑀 ‘ 𝑣 ) ) ) ) | 
						
							| 58 | 39 57 | mpteq12dv | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑣  ∈  𝑉 ( 𝑀 ‘ ( 𝑥  ·  𝑣 ) )  =  ( 𝑦  ∙  ( 𝑀 ‘ 𝑣 ) ) ) ) ) | 
						
							| 59 | 58 | eleq2d | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  𝐵  ∧  𝑚  =  𝑀 )  →  ( 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  ↔  𝑎  ∈  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑣  ∈  𝑉 ( 𝑀 ‘ ( 𝑥  ·  𝑣 ) )  =  ( 𝑦  ∙  ( 𝑀 ‘ 𝑣 ) ) ) ) ) ) | 
						
							| 60 | 38 59 | syld3an2 | ⊢ ( ( 𝑢  =  𝑈  ∧  𝑏  =  ( Base ‘ ( Scalar ‘ 𝑢 ) )  ∧  𝑚  =  𝑀 )  →  ( 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  ↔  𝑎  ∈  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑣  ∈  𝑉 ( 𝑀 ‘ ( 𝑥  ·  𝑣 ) )  =  ( 𝑦  ∙  ( 𝑀 ‘ 𝑣 ) ) ) ) ) ) | 
						
							| 61 | 29 30 31 60 | sbc3ie | ⊢ ( [ 𝑈  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ 𝑀  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  ↔  𝑎  ∈  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑣  ∈  𝑉 ( 𝑀 ‘ ( 𝑥  ·  𝑣 ) )  =  ( 𝑦  ∙  ( 𝑀 ‘ 𝑣 ) ) ) ) ) | 
						
							| 62 | 28 61 | bitrdi | ⊢ ( 𝑤  =  𝑊  →  ( [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) )  ↔  𝑎  ∈  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑣  ∈  𝑉 ( 𝑀 ‘ ( 𝑥  ·  𝑣 ) )  =  ( 𝑦  ∙  ( 𝑀 ‘ 𝑣 ) ) ) ) ) ) | 
						
							| 63 | 62 | eqabcdv | ⊢ ( 𝑤  =  𝑊  →  { 𝑎  ∣  [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) }  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑣  ∈  𝑉 ( 𝑀 ‘ ( 𝑥  ·  𝑣 ) )  =  ( 𝑦  ∙  ( 𝑀 ‘ 𝑣 ) ) ) ) ) | 
						
							| 64 |  | eqid | ⊢ ( 𝑤  ∈  𝐻  ↦  { 𝑎  ∣  [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } )  =  ( 𝑤  ∈  𝐻  ↦  { 𝑎  ∣  [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) | 
						
							| 65 | 63 64 6 | mptfvmpt | ⊢ ( 𝑊  ∈  𝐻  →  ( ( 𝑤  ∈  𝐻  ↦  { 𝑎  ∣  [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 )  /  𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) )  /  𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 )  /  𝑚 ] 𝑎  ∈  ( 𝑥  ∈  𝑏  ↦  ( ℩ 𝑦  ∈  𝑏 ∀ 𝑣  ∈  ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 (  ·𝑠  ‘ 𝑢 ) 𝑣 ) )  =  ( 𝑦 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ‘ 𝑊 )  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑣  ∈  𝑉 ( 𝑀 ‘ ( 𝑥  ·  𝑣 ) )  =  ( 𝑦  ∙  ( 𝑀 ‘ 𝑣 ) ) ) ) ) | 
						
							| 66 | 14 65 | sylan9eq | ⊢ ( ( 𝐾  ∈  𝑌  ∧  𝑊  ∈  𝐻 )  →  𝐼  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑣  ∈  𝑉 ( 𝑀 ‘ ( 𝑥  ·  𝑣 ) )  =  ( 𝑦  ∙  ( 𝑀 ‘ 𝑣 ) ) ) ) ) | 
						
							| 67 | 11 66 | syl | ⊢ ( 𝜑  →  𝐼  =  ( 𝑥  ∈  𝐵  ↦  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑣  ∈  𝑉 ( 𝑀 ‘ ( 𝑥  ·  𝑣 ) )  =  ( 𝑦  ∙  ( 𝑀 ‘ 𝑣 ) ) ) ) ) |