Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hgmapfval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hgmapfval.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hgmapfval.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
5 |
|
hgmapfval.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hgmapfval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
7 |
|
hgmapfval.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hgmapfval.s |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
9 |
|
hgmapfval.m |
⊢ 𝑀 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hgmapfval.i |
⊢ 𝐼 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hgmapfval.k |
⊢ ( 𝜑 → ( 𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
1
|
hgmapffval |
⊢ ( 𝐾 ∈ 𝑌 → ( HGMap ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ) |
13 |
12
|
fveq1d |
⊢ ( 𝐾 ∈ 𝑌 → ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ‘ 𝑊 ) ) |
14 |
10 13
|
syl5eq |
⊢ ( 𝐾 ∈ 𝑌 → 𝐼 = ( ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ‘ 𝑊 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
16 |
15 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) = 𝑈 ) |
17 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ) |
18 |
17 9
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) = 𝑀 ) |
19 |
|
2fveq3 |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) = ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
20 |
19
|
oveqd |
⊢ ( 𝑤 = 𝑊 → ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ↔ ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) |
22 |
21
|
ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ↔ ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) |
23 |
22
|
riotabidv |
⊢ ( 𝑤 = 𝑊 → ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) = ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) |
24 |
23
|
mpteq2dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) = ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) |
25 |
24
|
eleq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ↔ 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) |
26 |
18 25
|
sbceqbid |
⊢ ( 𝑤 = 𝑊 → ( [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ↔ [ 𝑀 / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) |
27 |
26
|
sbcbidv |
⊢ ( 𝑤 = 𝑊 → ( [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ↔ [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ 𝑀 / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) |
28 |
16 27
|
sbceqbid |
⊢ ( 𝑤 = 𝑊 → ( [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ↔ [ 𝑈 / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ 𝑀 / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ) ) |
29 |
2
|
fvexi |
⊢ 𝑈 ∈ V |
30 |
|
fvex |
⊢ ( Base ‘ ( Scalar ‘ 𝑢 ) ) ∈ V |
31 |
9
|
fvexi |
⊢ 𝑀 ∈ V |
32 |
|
simp2 |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = ( Base ‘ ( Scalar ‘ 𝑢 ) ) ∧ 𝑚 = 𝑀 ) → 𝑏 = ( Base ‘ ( Scalar ‘ 𝑢 ) ) ) |
33 |
|
simp1 |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = ( Base ‘ ( Scalar ‘ 𝑢 ) ) ∧ 𝑚 = 𝑀 ) → 𝑢 = 𝑈 ) |
34 |
33
|
fveq2d |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = ( Base ‘ ( Scalar ‘ 𝑢 ) ) ∧ 𝑚 = 𝑀 ) → ( Scalar ‘ 𝑢 ) = ( Scalar ‘ 𝑈 ) ) |
35 |
34 5
|
eqtr4di |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = ( Base ‘ ( Scalar ‘ 𝑢 ) ) ∧ 𝑚 = 𝑀 ) → ( Scalar ‘ 𝑢 ) = 𝑅 ) |
36 |
35
|
fveq2d |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = ( Base ‘ ( Scalar ‘ 𝑢 ) ) ∧ 𝑚 = 𝑀 ) → ( Base ‘ ( Scalar ‘ 𝑢 ) ) = ( Base ‘ 𝑅 ) ) |
37 |
32 36
|
eqtrd |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = ( Base ‘ ( Scalar ‘ 𝑢 ) ) ∧ 𝑚 = 𝑀 ) → 𝑏 = ( Base ‘ 𝑅 ) ) |
38 |
37 6
|
eqtr4di |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = ( Base ‘ ( Scalar ‘ 𝑢 ) ) ∧ 𝑚 = 𝑀 ) → 𝑏 = 𝐵 ) |
39 |
|
simp2 |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → 𝑏 = 𝐵 ) |
40 |
|
simp1 |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → 𝑢 = 𝑈 ) |
41 |
40
|
fveq2d |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( Base ‘ 𝑢 ) = ( Base ‘ 𝑈 ) ) |
42 |
41 3
|
eqtr4di |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( Base ‘ 𝑢 ) = 𝑉 ) |
43 |
|
simp3 |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → 𝑚 = 𝑀 ) |
44 |
40
|
fveq2d |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( ·𝑠 ‘ 𝑢 ) = ( ·𝑠 ‘ 𝑈 ) ) |
45 |
44 4
|
eqtr4di |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( ·𝑠 ‘ 𝑢 ) = · ) |
46 |
45
|
oveqd |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) = ( 𝑥 · 𝑣 ) ) |
47 |
43 46
|
fveq12d |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) ) |
48 |
|
eqidd |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
49 |
48 7
|
eqtr4di |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = 𝐶 ) |
50 |
49
|
fveq2d |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ·𝑠 ‘ 𝐶 ) ) |
51 |
50 8
|
eqtr4di |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ∙ ) |
52 |
|
eqidd |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → 𝑦 = 𝑦 ) |
53 |
43
|
fveq1d |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( 𝑚 ‘ 𝑣 ) = ( 𝑀 ‘ 𝑣 ) ) |
54 |
51 52 53
|
oveq123d |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) |
55 |
47 54
|
eqeq12d |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ↔ ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) |
56 |
42 55
|
raleqbidv |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ↔ ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) |
57 |
39 56
|
riotaeqbidv |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) |
58 |
39 57
|
mpteq12dv |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) ) |
59 |
58
|
eleq2d |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = 𝐵 ∧ 𝑚 = 𝑀 ) → ( 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ↔ 𝑎 ∈ ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) ) ) |
60 |
38 59
|
syld3an2 |
⊢ ( ( 𝑢 = 𝑈 ∧ 𝑏 = ( Base ‘ ( Scalar ‘ 𝑢 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ↔ 𝑎 ∈ ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) ) ) |
61 |
29 30 31 60
|
sbc3ie |
⊢ ( [ 𝑈 / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ 𝑀 / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ↔ 𝑎 ∈ ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) ) |
62 |
28 61
|
bitrdi |
⊢ ( 𝑤 = 𝑊 → ( [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) ↔ 𝑎 ∈ ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) ) ) |
63 |
62
|
abbi1dv |
⊢ ( 𝑤 = 𝑊 → { 𝑎 ∣ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) ) |
64 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) = ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) |
65 |
63 64 6
|
mptfvmpt |
⊢ ( 𝑊 ∈ 𝐻 → ( ( 𝑤 ∈ 𝐻 ↦ { 𝑎 ∣ [ ( ( DVecH ‘ 𝐾 ) ‘ 𝑤 ) / 𝑢 ] [ ( Base ‘ ( Scalar ‘ 𝑢 ) ) / 𝑏 ] [ ( ( HDMap ‘ 𝐾 ) ‘ 𝑤 ) / 𝑚 ] 𝑎 ∈ ( 𝑥 ∈ 𝑏 ↦ ( ℩ 𝑦 ∈ 𝑏 ∀ 𝑣 ∈ ( Base ‘ 𝑢 ) ( 𝑚 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑢 ) 𝑣 ) ) = ( 𝑦 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑤 ) ) ( 𝑚 ‘ 𝑣 ) ) ) ) } ) ‘ 𝑊 ) = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) ) |
66 |
14 65
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) ) |
67 |
11 66
|
syl |
⊢ ( 𝜑 → 𝐼 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) ) |