| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmapval.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hgmapfval.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hgmapfval.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hgmapfval.t |  |-  .x. = ( .s ` U ) | 
						
							| 5 |  | hgmapfval.r |  |-  R = ( Scalar ` U ) | 
						
							| 6 |  | hgmapfval.b |  |-  B = ( Base ` R ) | 
						
							| 7 |  | hgmapfval.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | hgmapfval.s |  |-  .xb = ( .s ` C ) | 
						
							| 9 |  | hgmapfval.m |  |-  M = ( ( HDMap ` K ) ` W ) | 
						
							| 10 |  | hgmapfval.i |  |-  I = ( ( HGMap ` K ) ` W ) | 
						
							| 11 |  | hgmapfval.k |  |-  ( ph -> ( K e. Y /\ W e. H ) ) | 
						
							| 12 | 1 | hgmapffval |  |-  ( K e. Y -> ( HGMap ` K ) = ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) } ) ) | 
						
							| 13 | 12 | fveq1d |  |-  ( K e. Y -> ( ( HGMap ` K ) ` W ) = ( ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) } ) ` W ) ) | 
						
							| 14 | 10 13 | eqtrid |  |-  ( K e. Y -> I = ( ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) } ) ` W ) ) | 
						
							| 15 |  | fveq2 |  |-  ( w = W -> ( ( DVecH ` K ) ` w ) = ( ( DVecH ` K ) ` W ) ) | 
						
							| 16 | 15 2 | eqtr4di |  |-  ( w = W -> ( ( DVecH ` K ) ` w ) = U ) | 
						
							| 17 |  | fveq2 |  |-  ( w = W -> ( ( HDMap ` K ) ` w ) = ( ( HDMap ` K ) ` W ) ) | 
						
							| 18 | 17 9 | eqtr4di |  |-  ( w = W -> ( ( HDMap ` K ) ` w ) = M ) | 
						
							| 19 |  | 2fveq3 |  |-  ( w = W -> ( .s ` ( ( LCDual ` K ) ` w ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 20 | 19 | oveqd |  |-  ( w = W -> ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) | 
						
							| 21 | 20 | eqeq2d |  |-  ( w = W -> ( ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) <-> ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) | 
						
							| 22 | 21 | ralbidv |  |-  ( w = W -> ( A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) <-> A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) | 
						
							| 23 | 22 | riotabidv |  |-  ( w = W -> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) = ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) | 
						
							| 24 | 23 | mpteq2dv |  |-  ( w = W -> ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) = ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) ) | 
						
							| 25 | 24 | eleq2d |  |-  ( w = W -> ( a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) <-> a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) ) ) | 
						
							| 26 | 18 25 | sbceqbid |  |-  ( w = W -> ( [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) <-> [. M / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) ) ) | 
						
							| 27 | 26 | sbcbidv |  |-  ( w = W -> ( [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) <-> [. ( Base ` ( Scalar ` u ) ) / b ]. [. M / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) ) ) | 
						
							| 28 | 16 27 | sbceqbid |  |-  ( w = W -> ( [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) <-> [. U / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. M / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) ) ) | 
						
							| 29 | 2 | fvexi |  |-  U e. _V | 
						
							| 30 |  | fvex |  |-  ( Base ` ( Scalar ` u ) ) e. _V | 
						
							| 31 | 9 | fvexi |  |-  M e. _V | 
						
							| 32 |  | simp2 |  |-  ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> b = ( Base ` ( Scalar ` u ) ) ) | 
						
							| 33 |  | simp1 |  |-  ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> u = U ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> ( Scalar ` u ) = ( Scalar ` U ) ) | 
						
							| 35 | 34 5 | eqtr4di |  |-  ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> ( Scalar ` u ) = R ) | 
						
							| 36 | 35 | fveq2d |  |-  ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> ( Base ` ( Scalar ` u ) ) = ( Base ` R ) ) | 
						
							| 37 | 32 36 | eqtrd |  |-  ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> b = ( Base ` R ) ) | 
						
							| 38 | 37 6 | eqtr4di |  |-  ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> b = B ) | 
						
							| 39 |  | simp2 |  |-  ( ( u = U /\ b = B /\ m = M ) -> b = B ) | 
						
							| 40 |  | simp1 |  |-  ( ( u = U /\ b = B /\ m = M ) -> u = U ) | 
						
							| 41 | 40 | fveq2d |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( Base ` u ) = ( Base ` U ) ) | 
						
							| 42 | 41 3 | eqtr4di |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( Base ` u ) = V ) | 
						
							| 43 |  | simp3 |  |-  ( ( u = U /\ b = B /\ m = M ) -> m = M ) | 
						
							| 44 | 40 | fveq2d |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( .s ` u ) = ( .s ` U ) ) | 
						
							| 45 | 44 4 | eqtr4di |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( .s ` u ) = .x. ) | 
						
							| 46 | 45 | oveqd |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( x ( .s ` u ) v ) = ( x .x. v ) ) | 
						
							| 47 | 43 46 | fveq12d |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( m ` ( x ( .s ` u ) v ) ) = ( M ` ( x .x. v ) ) ) | 
						
							| 48 |  | eqidd |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) ) | 
						
							| 49 | 48 7 | eqtr4di |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( ( LCDual ` K ) ` W ) = C ) | 
						
							| 50 | 49 | fveq2d |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` C ) ) | 
						
							| 51 | 50 8 | eqtr4di |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( .s ` ( ( LCDual ` K ) ` W ) ) = .xb ) | 
						
							| 52 |  | eqidd |  |-  ( ( u = U /\ b = B /\ m = M ) -> y = y ) | 
						
							| 53 | 43 | fveq1d |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( m ` v ) = ( M ` v ) ) | 
						
							| 54 | 51 52 53 | oveq123d |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) = ( y .xb ( M ` v ) ) ) | 
						
							| 55 | 47 54 | eqeq12d |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) <-> ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) | 
						
							| 56 | 42 55 | raleqbidv |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) <-> A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) | 
						
							| 57 | 39 56 | riotaeqbidv |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) = ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) | 
						
							| 58 | 39 57 | mpteq12dv |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) = ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) | 
						
							| 59 | 58 | eleq2d |  |-  ( ( u = U /\ b = B /\ m = M ) -> ( a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) <-> a e. ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) ) | 
						
							| 60 | 38 59 | syld3an2 |  |-  ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> ( a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) <-> a e. ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) ) | 
						
							| 61 | 29 30 31 60 | sbc3ie |  |-  ( [. U / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. M / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) <-> a e. ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) | 
						
							| 62 | 28 61 | bitrdi |  |-  ( w = W -> ( [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) <-> a e. ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) ) | 
						
							| 63 | 62 | eqabcdv |  |-  ( w = W -> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) } = ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) | 
						
							| 64 |  | eqid |  |-  ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) } ) = ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) } ) | 
						
							| 65 | 63 64 6 | mptfvmpt |  |-  ( W e. H -> ( ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) } ) ` W ) = ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) | 
						
							| 66 | 14 65 | sylan9eq |  |-  ( ( K e. Y /\ W e. H ) -> I = ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) | 
						
							| 67 | 11 66 | syl |  |-  ( ph -> I = ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) |