Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapval.h |
|- H = ( LHyp ` K ) |
2 |
|
hgmapfval.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hgmapfval.v |
|- V = ( Base ` U ) |
4 |
|
hgmapfval.t |
|- .x. = ( .s ` U ) |
5 |
|
hgmapfval.r |
|- R = ( Scalar ` U ) |
6 |
|
hgmapfval.b |
|- B = ( Base ` R ) |
7 |
|
hgmapfval.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
hgmapfval.s |
|- .xb = ( .s ` C ) |
9 |
|
hgmapfval.m |
|- M = ( ( HDMap ` K ) ` W ) |
10 |
|
hgmapfval.i |
|- I = ( ( HGMap ` K ) ` W ) |
11 |
|
hgmapfval.k |
|- ( ph -> ( K e. Y /\ W e. H ) ) |
12 |
1
|
hgmapffval |
|- ( K e. Y -> ( HGMap ` K ) = ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) } ) ) |
13 |
12
|
fveq1d |
|- ( K e. Y -> ( ( HGMap ` K ) ` W ) = ( ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) } ) ` W ) ) |
14 |
10 13
|
eqtrid |
|- ( K e. Y -> I = ( ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) } ) ` W ) ) |
15 |
|
fveq2 |
|- ( w = W -> ( ( DVecH ` K ) ` w ) = ( ( DVecH ` K ) ` W ) ) |
16 |
15 2
|
eqtr4di |
|- ( w = W -> ( ( DVecH ` K ) ` w ) = U ) |
17 |
|
fveq2 |
|- ( w = W -> ( ( HDMap ` K ) ` w ) = ( ( HDMap ` K ) ` W ) ) |
18 |
17 9
|
eqtr4di |
|- ( w = W -> ( ( HDMap ` K ) ` w ) = M ) |
19 |
|
2fveq3 |
|- ( w = W -> ( .s ` ( ( LCDual ` K ) ` w ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) ) |
20 |
19
|
oveqd |
|- ( w = W -> ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) |
21 |
20
|
eqeq2d |
|- ( w = W -> ( ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) <-> ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) |
22 |
21
|
ralbidv |
|- ( w = W -> ( A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) <-> A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) |
23 |
22
|
riotabidv |
|- ( w = W -> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) = ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) |
24 |
23
|
mpteq2dv |
|- ( w = W -> ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) = ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) ) |
25 |
24
|
eleq2d |
|- ( w = W -> ( a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) <-> a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) ) ) |
26 |
18 25
|
sbceqbid |
|- ( w = W -> ( [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) <-> [. M / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) ) ) |
27 |
26
|
sbcbidv |
|- ( w = W -> ( [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) <-> [. ( Base ` ( Scalar ` u ) ) / b ]. [. M / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) ) ) |
28 |
16 27
|
sbceqbid |
|- ( w = W -> ( [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) <-> [. U / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. M / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) ) ) |
29 |
2
|
fvexi |
|- U e. _V |
30 |
|
fvex |
|- ( Base ` ( Scalar ` u ) ) e. _V |
31 |
9
|
fvexi |
|- M e. _V |
32 |
|
simp2 |
|- ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> b = ( Base ` ( Scalar ` u ) ) ) |
33 |
|
simp1 |
|- ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> u = U ) |
34 |
33
|
fveq2d |
|- ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> ( Scalar ` u ) = ( Scalar ` U ) ) |
35 |
34 5
|
eqtr4di |
|- ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> ( Scalar ` u ) = R ) |
36 |
35
|
fveq2d |
|- ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> ( Base ` ( Scalar ` u ) ) = ( Base ` R ) ) |
37 |
32 36
|
eqtrd |
|- ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> b = ( Base ` R ) ) |
38 |
37 6
|
eqtr4di |
|- ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> b = B ) |
39 |
|
simp2 |
|- ( ( u = U /\ b = B /\ m = M ) -> b = B ) |
40 |
|
simp1 |
|- ( ( u = U /\ b = B /\ m = M ) -> u = U ) |
41 |
40
|
fveq2d |
|- ( ( u = U /\ b = B /\ m = M ) -> ( Base ` u ) = ( Base ` U ) ) |
42 |
41 3
|
eqtr4di |
|- ( ( u = U /\ b = B /\ m = M ) -> ( Base ` u ) = V ) |
43 |
|
simp3 |
|- ( ( u = U /\ b = B /\ m = M ) -> m = M ) |
44 |
40
|
fveq2d |
|- ( ( u = U /\ b = B /\ m = M ) -> ( .s ` u ) = ( .s ` U ) ) |
45 |
44 4
|
eqtr4di |
|- ( ( u = U /\ b = B /\ m = M ) -> ( .s ` u ) = .x. ) |
46 |
45
|
oveqd |
|- ( ( u = U /\ b = B /\ m = M ) -> ( x ( .s ` u ) v ) = ( x .x. v ) ) |
47 |
43 46
|
fveq12d |
|- ( ( u = U /\ b = B /\ m = M ) -> ( m ` ( x ( .s ` u ) v ) ) = ( M ` ( x .x. v ) ) ) |
48 |
|
eqidd |
|- ( ( u = U /\ b = B /\ m = M ) -> ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) ) |
49 |
48 7
|
eqtr4di |
|- ( ( u = U /\ b = B /\ m = M ) -> ( ( LCDual ` K ) ` W ) = C ) |
50 |
49
|
fveq2d |
|- ( ( u = U /\ b = B /\ m = M ) -> ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` C ) ) |
51 |
50 8
|
eqtr4di |
|- ( ( u = U /\ b = B /\ m = M ) -> ( .s ` ( ( LCDual ` K ) ` W ) ) = .xb ) |
52 |
|
eqidd |
|- ( ( u = U /\ b = B /\ m = M ) -> y = y ) |
53 |
43
|
fveq1d |
|- ( ( u = U /\ b = B /\ m = M ) -> ( m ` v ) = ( M ` v ) ) |
54 |
51 52 53
|
oveq123d |
|- ( ( u = U /\ b = B /\ m = M ) -> ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) = ( y .xb ( M ` v ) ) ) |
55 |
47 54
|
eqeq12d |
|- ( ( u = U /\ b = B /\ m = M ) -> ( ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) <-> ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) |
56 |
42 55
|
raleqbidv |
|- ( ( u = U /\ b = B /\ m = M ) -> ( A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) <-> A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) |
57 |
39 56
|
riotaeqbidv |
|- ( ( u = U /\ b = B /\ m = M ) -> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) = ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) |
58 |
39 57
|
mpteq12dv |
|- ( ( u = U /\ b = B /\ m = M ) -> ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) = ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) |
59 |
58
|
eleq2d |
|- ( ( u = U /\ b = B /\ m = M ) -> ( a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) <-> a e. ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) ) |
60 |
38 59
|
syld3an2 |
|- ( ( u = U /\ b = ( Base ` ( Scalar ` u ) ) /\ m = M ) -> ( a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) <-> a e. ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) ) |
61 |
29 30 31 60
|
sbc3ie |
|- ( [. U / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. M / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` W ) ) ( m ` v ) ) ) ) <-> a e. ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) |
62 |
28 61
|
bitrdi |
|- ( w = W -> ( [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) <-> a e. ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) ) |
63 |
62
|
abbi1dv |
|- ( w = W -> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) } = ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) |
64 |
|
eqid |
|- ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) } ) = ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) } ) |
65 |
63 64 6
|
mptfvmpt |
|- ( W e. H -> ( ( w e. H |-> { a | [. ( ( DVecH ` K ) ` w ) / u ]. [. ( Base ` ( Scalar ` u ) ) / b ]. [. ( ( HDMap ` K ) ` w ) / m ]. a e. ( x e. b |-> ( iota_ y e. b A. v e. ( Base ` u ) ( m ` ( x ( .s ` u ) v ) ) = ( y ( .s ` ( ( LCDual ` K ) ` w ) ) ( m ` v ) ) ) ) } ) ` W ) = ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) |
66 |
14 65
|
sylan9eq |
|- ( ( K e. Y /\ W e. H ) -> I = ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) |
67 |
11 66
|
syl |
|- ( ph -> I = ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ) |