Metamath Proof Explorer


Theorem hgmapval

Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of Baer p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 . (Contributed by NM, 25-Mar-2015)

Ref Expression
Hypotheses hgmapval.h
|- H = ( LHyp ` K )
hgmapfval.u
|- U = ( ( DVecH ` K ) ` W )
hgmapfval.v
|- V = ( Base ` U )
hgmapfval.t
|- .x. = ( .s ` U )
hgmapfval.r
|- R = ( Scalar ` U )
hgmapfval.b
|- B = ( Base ` R )
hgmapfval.c
|- C = ( ( LCDual ` K ) ` W )
hgmapfval.s
|- .xb = ( .s ` C )
hgmapfval.m
|- M = ( ( HDMap ` K ) ` W )
hgmapfval.i
|- I = ( ( HGMap ` K ) ` W )
hgmapfval.k
|- ( ph -> ( K e. Y /\ W e. H ) )
hgmapval.x
|- ( ph -> X e. B )
Assertion hgmapval
|- ( ph -> ( I ` X ) = ( iota_ y e. B A. v e. V ( M ` ( X .x. v ) ) = ( y .xb ( M ` v ) ) ) )

Proof

Step Hyp Ref Expression
1 hgmapval.h
 |-  H = ( LHyp ` K )
2 hgmapfval.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hgmapfval.v
 |-  V = ( Base ` U )
4 hgmapfval.t
 |-  .x. = ( .s ` U )
5 hgmapfval.r
 |-  R = ( Scalar ` U )
6 hgmapfval.b
 |-  B = ( Base ` R )
7 hgmapfval.c
 |-  C = ( ( LCDual ` K ) ` W )
8 hgmapfval.s
 |-  .xb = ( .s ` C )
9 hgmapfval.m
 |-  M = ( ( HDMap ` K ) ` W )
10 hgmapfval.i
 |-  I = ( ( HGMap ` K ) ` W )
11 hgmapfval.k
 |-  ( ph -> ( K e. Y /\ W e. H ) )
12 hgmapval.x
 |-  ( ph -> X e. B )
13 1 2 3 4 5 6 7 8 9 10 11 hgmapfval
 |-  ( ph -> I = ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) )
14 13 fveq1d
 |-  ( ph -> ( I ` X ) = ( ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ` X ) )
15 riotaex
 |-  ( iota_ y e. B A. v e. V ( M ` ( X .x. v ) ) = ( y .xb ( M ` v ) ) ) e. _V
16 fvoveq1
 |-  ( x = X -> ( M ` ( x .x. v ) ) = ( M ` ( X .x. v ) ) )
17 16 eqeq1d
 |-  ( x = X -> ( ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) <-> ( M ` ( X .x. v ) ) = ( y .xb ( M ` v ) ) ) )
18 17 ralbidv
 |-  ( x = X -> ( A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) <-> A. v e. V ( M ` ( X .x. v ) ) = ( y .xb ( M ` v ) ) ) )
19 18 riotabidv
 |-  ( x = X -> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) = ( iota_ y e. B A. v e. V ( M ` ( X .x. v ) ) = ( y .xb ( M ` v ) ) ) )
20 eqid
 |-  ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) = ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) )
21 19 20 fvmptg
 |-  ( ( X e. B /\ ( iota_ y e. B A. v e. V ( M ` ( X .x. v ) ) = ( y .xb ( M ` v ) ) ) e. _V ) -> ( ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ` X ) = ( iota_ y e. B A. v e. V ( M ` ( X .x. v ) ) = ( y .xb ( M ` v ) ) ) )
22 12 15 21 sylancl
 |-  ( ph -> ( ( x e. B |-> ( iota_ y e. B A. v e. V ( M ` ( x .x. v ) ) = ( y .xb ( M ` v ) ) ) ) ` X ) = ( iota_ y e. B A. v e. V ( M ` ( X .x. v ) ) = ( y .xb ( M ` v ) ) ) )
23 14 22 eqtrd
 |-  ( ph -> ( I ` X ) = ( iota_ y e. B A. v e. V ( M ` ( X .x. v ) ) = ( y .xb ( M ` v ) ) ) )