Metamath Proof Explorer


Theorem hgmapval

Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of Baer p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 . (Contributed by NM, 25-Mar-2015)

Ref Expression
Hypotheses hgmapval.h 𝐻 = ( LHyp ‘ 𝐾 )
hgmapfval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hgmapfval.v 𝑉 = ( Base ‘ 𝑈 )
hgmapfval.t · = ( ·𝑠𝑈 )
hgmapfval.r 𝑅 = ( Scalar ‘ 𝑈 )
hgmapfval.b 𝐵 = ( Base ‘ 𝑅 )
hgmapfval.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hgmapfval.s = ( ·𝑠𝐶 )
hgmapfval.m 𝑀 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hgmapfval.i 𝐼 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
hgmapfval.k ( 𝜑 → ( 𝐾𝑌𝑊𝐻 ) )
hgmapval.x ( 𝜑𝑋𝐵 )
Assertion hgmapval ( 𝜑 → ( 𝐼𝑋 ) = ( 𝑦𝐵𝑣𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) )

Proof

Step Hyp Ref Expression
1 hgmapval.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hgmapfval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hgmapfval.v 𝑉 = ( Base ‘ 𝑈 )
4 hgmapfval.t · = ( ·𝑠𝑈 )
5 hgmapfval.r 𝑅 = ( Scalar ‘ 𝑈 )
6 hgmapfval.b 𝐵 = ( Base ‘ 𝑅 )
7 hgmapfval.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 hgmapfval.s = ( ·𝑠𝐶 )
9 hgmapfval.m 𝑀 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
10 hgmapfval.i 𝐼 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
11 hgmapfval.k ( 𝜑 → ( 𝐾𝑌𝑊𝐻 ) )
12 hgmapval.x ( 𝜑𝑋𝐵 )
13 1 2 3 4 5 6 7 8 9 10 11 hgmapfval ( 𝜑𝐼 = ( 𝑥𝐵 ↦ ( 𝑦𝐵𝑣𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) ) )
14 13 fveq1d ( 𝜑 → ( 𝐼𝑋 ) = ( ( 𝑥𝐵 ↦ ( 𝑦𝐵𝑣𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) ) ‘ 𝑋 ) )
15 riotaex ( 𝑦𝐵𝑣𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) ∈ V
16 fvoveq1 ( 𝑥 = 𝑋 → ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) )
17 16 eqeq1d ( 𝑥 = 𝑋 → ( ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ↔ ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) )
18 17 ralbidv ( 𝑥 = 𝑋 → ( ∀ 𝑣𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ↔ ∀ 𝑣𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) )
19 18 riotabidv ( 𝑥 = 𝑋 → ( 𝑦𝐵𝑣𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) = ( 𝑦𝐵𝑣𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) )
20 eqid ( 𝑥𝐵 ↦ ( 𝑦𝐵𝑣𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) ) = ( 𝑥𝐵 ↦ ( 𝑦𝐵𝑣𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) )
21 19 20 fvmptg ( ( 𝑋𝐵 ∧ ( 𝑦𝐵𝑣𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) ∈ V ) → ( ( 𝑥𝐵 ↦ ( 𝑦𝐵𝑣𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) ) ‘ 𝑋 ) = ( 𝑦𝐵𝑣𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) )
22 12 15 21 sylancl ( 𝜑 → ( ( 𝑥𝐵 ↦ ( 𝑦𝐵𝑣𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) ) ‘ 𝑋 ) = ( 𝑦𝐵𝑣𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) )
23 14 22 eqtrd ( 𝜑 → ( 𝐼𝑋 ) = ( 𝑦𝐵𝑣𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ( 𝑀𝑣 ) ) ) )