Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hgmapfval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hgmapfval.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hgmapfval.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
5 |
|
hgmapfval.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hgmapfval.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
7 |
|
hgmapfval.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hgmapfval.s |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
9 |
|
hgmapfval.m |
⊢ 𝑀 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hgmapfval.i |
⊢ 𝐼 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hgmapfval.k |
⊢ ( 𝜑 → ( 𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
hgmapval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
13 |
1 2 3 4 5 6 7 8 9 10 11
|
hgmapfval |
⊢ ( 𝜑 → 𝐼 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) ) |
14 |
13
|
fveq1d |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) ‘ 𝑋 ) ) |
15 |
|
riotaex |
⊢ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ∈ V |
16 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ↔ ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) |
18 |
17
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ↔ ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) |
19 |
18
|
riotabidv |
⊢ ( 𝑥 = 𝑋 → ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) |
20 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) |
21 |
19 20
|
fvmptg |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ∈ V ) → ( ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) ‘ 𝑋 ) = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) |
22 |
12 15 21
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑥 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) ‘ 𝑋 ) = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) |
23 |
14 22
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑣 ∈ 𝑉 ( 𝑀 ‘ ( 𝑋 · 𝑣 ) ) = ( 𝑦 ∙ ( 𝑀 ‘ 𝑣 ) ) ) ) |