| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmapfn.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hgmapfn.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hgmapfn.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | hgmapfn.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | hgmapfn.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hgmapfn.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 7 |  | riotaex | ⊢ ( ℩ 𝑗  ∈  𝐵 ∀ 𝑥  ∈  ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 (  ·𝑠  ‘ 𝑈 ) 𝑥 ) )  =  ( 𝑗 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) )  ∈  V | 
						
							| 8 |  | eqid | ⊢ ( 𝑘  ∈  𝐵  ↦  ( ℩ 𝑗  ∈  𝐵 ∀ 𝑥  ∈  ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 (  ·𝑠  ‘ 𝑈 ) 𝑥 ) )  =  ( 𝑗 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) )  =  ( 𝑘  ∈  𝐵  ↦  ( ℩ 𝑗  ∈  𝐵 ∀ 𝑥  ∈  ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 (  ·𝑠  ‘ 𝑈 ) 𝑥 ) )  =  ( 𝑗 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) | 
						
							| 9 | 7 8 | fnmpti | ⊢ ( 𝑘  ∈  𝐵  ↦  ( ℩ 𝑗  ∈  𝐵 ∀ 𝑥  ∈  ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 (  ·𝑠  ‘ 𝑈 ) 𝑥 ) )  =  ( 𝑗 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) )  Fn  𝐵 | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 11 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑈 )  =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 12 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 13 |  | eqid | ⊢ (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 14 |  | eqid | ⊢ ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 | 1 2 10 11 3 4 12 13 14 5 6 | hgmapfval | ⊢ ( 𝜑  →  𝐺  =  ( 𝑘  ∈  𝐵  ↦  ( ℩ 𝑗  ∈  𝐵 ∀ 𝑥  ∈  ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 (  ·𝑠  ‘ 𝑈 ) 𝑥 ) )  =  ( 𝑗 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 16 | 15 | fneq1d | ⊢ ( 𝜑  →  ( 𝐺  Fn  𝐵  ↔  ( 𝑘  ∈  𝐵  ↦  ( ℩ 𝑗  ∈  𝐵 ∀ 𝑥  ∈  ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 (  ·𝑠  ‘ 𝑈 ) 𝑥 ) )  =  ( 𝑗 (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) )  Fn  𝐵 ) ) | 
						
							| 17 | 9 16 | mpbiri | ⊢ ( 𝜑  →  𝐺  Fn  𝐵 ) |