Metamath Proof Explorer


Theorem hgmapfnN

Description: Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmapfn.h 𝐻 = ( LHyp ‘ 𝐾 )
hgmapfn.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hgmapfn.r 𝑅 = ( Scalar ‘ 𝑈 )
hgmapfn.b 𝐵 = ( Base ‘ 𝑅 )
hgmapfn.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
hgmapfn.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion hgmapfnN ( 𝜑𝐺 Fn 𝐵 )

Proof

Step Hyp Ref Expression
1 hgmapfn.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hgmapfn.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hgmapfn.r 𝑅 = ( Scalar ‘ 𝑈 )
4 hgmapfn.b 𝐵 = ( Base ‘ 𝑅 )
5 hgmapfn.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
6 hgmapfn.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 riotaex ( 𝑗𝐵𝑥 ∈ ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 ( ·𝑠𝑈 ) 𝑥 ) ) = ( 𝑗 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) ∈ V
8 eqid ( 𝑘𝐵 ↦ ( 𝑗𝐵𝑥 ∈ ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 ( ·𝑠𝑈 ) 𝑥 ) ) = ( 𝑗 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) = ( 𝑘𝐵 ↦ ( 𝑗𝐵𝑥 ∈ ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 ( ·𝑠𝑈 ) 𝑥 ) ) = ( 𝑗 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) )
9 7 8 fnmpti ( 𝑘𝐵 ↦ ( 𝑗𝐵𝑥 ∈ ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 ( ·𝑠𝑈 ) 𝑥 ) ) = ( 𝑗 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) Fn 𝐵
10 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
11 eqid ( ·𝑠𝑈 ) = ( ·𝑠𝑈 )
12 eqid ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
13 eqid ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
14 eqid ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
15 1 2 10 11 3 4 12 13 14 5 6 hgmapfval ( 𝜑𝐺 = ( 𝑘𝐵 ↦ ( 𝑗𝐵𝑥 ∈ ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 ( ·𝑠𝑈 ) 𝑥 ) ) = ( 𝑗 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) )
16 15 fneq1d ( 𝜑 → ( 𝐺 Fn 𝐵 ↔ ( 𝑘𝐵 ↦ ( 𝑗𝐵𝑥 ∈ ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 ( ·𝑠𝑈 ) 𝑥 ) ) = ( 𝑗 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) Fn 𝐵 ) )
17 9 16 mpbiri ( 𝜑𝐺 Fn 𝐵 )