Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapfn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hgmapfn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hgmapfn.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
4 |
|
hgmapfn.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
5 |
|
hgmapfn.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hgmapfn.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
riotaex |
⊢ ( ℩ 𝑗 ∈ 𝐵 ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) = ( 𝑗 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) ∈ V |
8 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐵 ↦ ( ℩ 𝑗 ∈ 𝐵 ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) = ( 𝑗 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) = ( 𝑘 ∈ 𝐵 ↦ ( ℩ 𝑗 ∈ 𝐵 ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) = ( 𝑗 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) |
9 |
7 8
|
fnmpti |
⊢ ( 𝑘 ∈ 𝐵 ↦ ( ℩ 𝑗 ∈ 𝐵 ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) = ( 𝑗 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) Fn 𝐵 |
10 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
11 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
12 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
14 |
|
eqid |
⊢ ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
1 2 10 11 3 4 12 13 14 5 6
|
hgmapfval |
⊢ ( 𝜑 → 𝐺 = ( 𝑘 ∈ 𝐵 ↦ ( ℩ 𝑗 ∈ 𝐵 ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) = ( 𝑗 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) ) |
16 |
15
|
fneq1d |
⊢ ( 𝜑 → ( 𝐺 Fn 𝐵 ↔ ( 𝑘 ∈ 𝐵 ↦ ( ℩ 𝑗 ∈ 𝐵 ∀ 𝑥 ∈ ( Base ‘ 𝑈 ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑘 ( ·𝑠 ‘ 𝑈 ) 𝑥 ) ) = ( 𝑗 ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) Fn 𝐵 ) ) |
17 |
9 16
|
mpbiri |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |