| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmapfn.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hgmapfn.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hgmapfn.r |  |-  R = ( Scalar ` U ) | 
						
							| 4 |  | hgmapfn.b |  |-  B = ( Base ` R ) | 
						
							| 5 |  | hgmapfn.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 6 |  | hgmapfn.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 7 |  | riotaex |  |-  ( iota_ j e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( k ( .s ` U ) x ) ) = ( j ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) e. _V | 
						
							| 8 |  | eqid |  |-  ( k e. B |-> ( iota_ j e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( k ( .s ` U ) x ) ) = ( j ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) ) = ( k e. B |-> ( iota_ j e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( k ( .s ` U ) x ) ) = ( j ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) ) | 
						
							| 9 | 7 8 | fnmpti |  |-  ( k e. B |-> ( iota_ j e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( k ( .s ` U ) x ) ) = ( j ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) ) Fn B | 
						
							| 10 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 11 |  | eqid |  |-  ( .s ` U ) = ( .s ` U ) | 
						
							| 12 |  | eqid |  |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) | 
						
							| 13 |  | eqid |  |-  ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 14 |  | eqid |  |-  ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) | 
						
							| 15 | 1 2 10 11 3 4 12 13 14 5 6 | hgmapfval |  |-  ( ph -> G = ( k e. B |-> ( iota_ j e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( k ( .s ` U ) x ) ) = ( j ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) ) ) | 
						
							| 16 | 15 | fneq1d |  |-  ( ph -> ( G Fn B <-> ( k e. B |-> ( iota_ j e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( k ( .s ` U ) x ) ) = ( j ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) ) Fn B ) ) | 
						
							| 17 | 9 16 | mpbiri |  |-  ( ph -> G Fn B ) |