Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapfn.h |
|- H = ( LHyp ` K ) |
2 |
|
hgmapfn.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hgmapfn.r |
|- R = ( Scalar ` U ) |
4 |
|
hgmapfn.b |
|- B = ( Base ` R ) |
5 |
|
hgmapfn.g |
|- G = ( ( HGMap ` K ) ` W ) |
6 |
|
hgmapfn.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
riotaex |
|- ( iota_ j e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( k ( .s ` U ) x ) ) = ( j ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) e. _V |
8 |
|
eqid |
|- ( k e. B |-> ( iota_ j e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( k ( .s ` U ) x ) ) = ( j ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) ) = ( k e. B |-> ( iota_ j e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( k ( .s ` U ) x ) ) = ( j ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) ) |
9 |
7 8
|
fnmpti |
|- ( k e. B |-> ( iota_ j e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( k ( .s ` U ) x ) ) = ( j ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) ) Fn B |
10 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
11 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
12 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
13 |
|
eqid |
|- ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) |
14 |
|
eqid |
|- ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) |
15 |
1 2 10 11 3 4 12 13 14 5 6
|
hgmapfval |
|- ( ph -> G = ( k e. B |-> ( iota_ j e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( k ( .s ` U ) x ) ) = ( j ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) ) ) |
16 |
15
|
fneq1d |
|- ( ph -> ( G Fn B <-> ( k e. B |-> ( iota_ j e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( k ( .s ` U ) x ) ) = ( j ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) ) Fn B ) ) |
17 |
9 16
|
mpbiri |
|- ( ph -> G Fn B ) |