Metamath Proof Explorer


Theorem hgmapcl

Description: Closure of scalar sigma map i.e. the map from the vector space scalar base to the dual space scalar base. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hgmapcl.h
|- H = ( LHyp ` K )
hgmapcl.u
|- U = ( ( DVecH ` K ) ` W )
hgmapcl.r
|- R = ( Scalar ` U )
hgmapcl.b
|- B = ( Base ` R )
hgmapcl.g
|- G = ( ( HGMap ` K ) ` W )
hgmapcl.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hgmapcl.f
|- ( ph -> F e. B )
Assertion hgmapcl
|- ( ph -> ( G ` F ) e. B )

Proof

Step Hyp Ref Expression
1 hgmapcl.h
 |-  H = ( LHyp ` K )
2 hgmapcl.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hgmapcl.r
 |-  R = ( Scalar ` U )
4 hgmapcl.b
 |-  B = ( Base ` R )
5 hgmapcl.g
 |-  G = ( ( HGMap ` K ) ` W )
6 hgmapcl.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
7 hgmapcl.f
 |-  ( ph -> F e. B )
8 eqid
 |-  ( Base ` U ) = ( Base ` U )
9 eqid
 |-  ( .s ` U ) = ( .s ` U )
10 eqid
 |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W )
11 eqid
 |-  ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) )
12 eqid
 |-  ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W )
13 1 2 8 9 3 4 10 11 12 5 6 7 hgmapval
 |-  ( ph -> ( G ` F ) = ( iota_ g e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( F ( .s ` U ) x ) ) = ( g ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) )
14 1 2 8 9 3 4 10 11 12 6 7 hdmap14lem15
 |-  ( ph -> E! g e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( F ( .s ` U ) x ) ) = ( g ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) )
15 riotacl
 |-  ( E! g e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( F ( .s ` U ) x ) ) = ( g ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) -> ( iota_ g e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( F ( .s ` U ) x ) ) = ( g ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) e. B )
16 14 15 syl
 |-  ( ph -> ( iota_ g e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( F ( .s ` U ) x ) ) = ( g ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) e. B )
17 13 16 eqeltrd
 |-  ( ph -> ( G ` F ) e. B )