Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapcl.h |
|- H = ( LHyp ` K ) |
2 |
|
hgmapcl.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hgmapcl.r |
|- R = ( Scalar ` U ) |
4 |
|
hgmapcl.b |
|- B = ( Base ` R ) |
5 |
|
hgmapcl.g |
|- G = ( ( HGMap ` K ) ` W ) |
6 |
|
hgmapcl.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
hgmapcl.f |
|- ( ph -> F e. B ) |
8 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
9 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
10 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
11 |
|
eqid |
|- ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) |
12 |
|
eqid |
|- ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) |
13 |
1 2 8 9 3 4 10 11 12 5 6 7
|
hgmapval |
|- ( ph -> ( G ` F ) = ( iota_ g e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( F ( .s ` U ) x ) ) = ( g ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) ) |
14 |
1 2 8 9 3 4 10 11 12 6 7
|
hdmap14lem15 |
|- ( ph -> E! g e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( F ( .s ` U ) x ) ) = ( g ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) |
15 |
|
riotacl |
|- ( E! g e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( F ( .s ` U ) x ) ) = ( g ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) -> ( iota_ g e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( F ( .s ` U ) x ) ) = ( g ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) e. B ) |
16 |
14 15
|
syl |
|- ( ph -> ( iota_ g e. B A. x e. ( Base ` U ) ( ( ( HDMap ` K ) ` W ) ` ( F ( .s ` U ) x ) ) = ( g ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) e. B ) |
17 |
13 16
|
eqeltrd |
|- ( ph -> ( G ` F ) e. B ) |